Что такое лямбда? 11-я буква греческого алфавита
Содержание:
- Различные варианты подключения и цвета кабеля лямбда зонда:
- Чем Лямбда-вариант отличается от оригинальной версии вируса?
- Функции и принцип действия датчика лямбда.
- Коэффициент избытка воздуха λ
- Виды кислородных датчиков
- Статьи по теме
- Как работает датчик кислорода
- ВЛИЯНИЕ НЕИСПРАВНОСТИ КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ПРИЧИНА ОТКАЗА
- Диагностика неисправностей для датчика кислорода Лямбда: основные принципы
- Для чего нужен лямбда зонд?
- Использование лямбда-выражения в функции
- Лямбда-выражения со стандартными операторами запросов
- Причины неисправности
- Основные виды лямбда-зондов
Различные варианты подключения и цвета кабеля лямбда зонда:
Обогреваемые зонды:
Количество кабелей | Цвет кабеля | Соединение |
3 | Черный
2 x белый |
Сигнал (заземление через корпус) нагревательного элемента |
4 | Черный
2 x белых Серый |
Сигнал, нагревательный элемент, земля |
Датчики сопротивления из диоксида титана:
Количество кабелей | Цвет кабеля | Соединение |
4 | красный
белый черный желтый |
Нагревательный элемент (+)
Нагревательный элемент (-) Сигнал (-) Сигнал (+) |
4 | Черный
2 x белых Серый |
Нагревательный элемент (+)
Нагревательный элемент (-) Сигнал (-) Сигнал (+) |
В любом случае, если есть информация от производителя, то необходимо ставить её в приоритет.
Чем Лямбда-вариант отличается от оригинальной версии вируса?
Штамм C.37 впервые обнаружили в декабре 2020 года. В мае Всемирная организация здравоохранения (ВОЗ) официально назвала его «Лямбда», а в июне классифицировала Lambda как «вариант, представляющий интерес», что на градус ниже штамма Дельта, который был описан как «тревожный вариант». Это означает, что лямбда-вирус имеет мутации, влияющие на более быструю передачу вируса или тяжесть заболевания.
Другие варианты коронавируса идентифицированные в качестве фокуса:
- Eta, обнаруженный в декабре 2020 года;
- Iota, выявленный в ноябре 2020 года;
- Kappa, диагностирован в октябре 2020 года.
Предварительные исследования коронавируса лямбда показывают, что он распространяется быстрее, чем Delta, и более агрессивен. Это связано с мутациями белка S, играющего особую роль в процессе заражения клеток в легких.
Профессор П. Цукаяма, изучающий этот вариант вируса, утверждает, что Lambda имеет в своем геноме 19 мутаций, 7 из которых находятся в S-белке (спайк). Это мутации RSYLTPGD246-253N, 260 L452Q, F490S и T76l, отвечающие за высокую инфекционность и агрессивность.
Блок новостей, связанных с вакцинацией против COVID-19
Одна из мутаций L452Q, уже присутствовала в вариантах Delta и Epsilon. Мутация F490S может привести к ускользанию от соответствующих антител, сделав вакцину менее эффективной. Отсюда и страх ученых по поводу большей вирулентности этого штамма.
Результаты исследования, опубликованные на сайте «bioRxiv», направленного на определение инфекционности лямбды и реакции нейтрализующих антител у вакцинированных лиц, показали в 2 раза более высокую инфекционность, чем вариант, вызвавший первую эпидемическую волну в США (D614G) и в 3 раза более высокую устойчивость к нейтрализации в группе, вакцинированной Pfizer, по сравнению с нейтрализацией варианта с мутацией D614G.
Функции и принцип действия датчика лямбда.
Для обеспечения идеального коэффициента конверсии каталитического нейтрализатора требуется обеспечить оптимальное сгорание топливо-воздушной смеси. В случае бензинового двигателя это достигается при соотношении воздух-топливо, равном 14,7 кг воздуха на 1 кг топлива, такой состав называется стехиометрическая топливная смесь.
Стехиометрическая смесь — это состав смеси в таких пропорциях топлива и воздуха, при которых происходит полное сгорание смеси без остатка избыточного кислорода. Теоретический коэффициент избытка воздуха топливной стехиометрической смеси равен единице.
Эта оптимальная смесь обозначается греческой буквой λ (лямбда). Лямбда используется для выражения соотношения воздуха между теоретическим потреблением воздуха и фактическим потоком воздуха:
λ = поток подаваемого воздуха: теоретический поток воздуха равен единице.
λ = 14,7 кг: 14,7 кг = 1
Принцип лямбда-датчика основан на измерении сравнения кислорода. Это означает, что оставшееся содержание кислорода в выхлопных газах (приблизительно 0,3–3%) сравнивается с содержанием кислорода в окружающем воздухе (около 20,8%).
Если остаточное содержание кислорода в выхлопных газах составляет 3% (обедненная смесь), возникает напряжение 0,1 V из-за разницы по сравнению с содержанием кислорода в окружающем воздухе.
Если оставшееся содержание кислорода составляет менее 3% (богатая смесь), напряжение датчика возрастает до 0,9 V пропорционально увеличению разницы. Содержание оставшегося кислорода измеряется с помощью нескольких лямбда-зондов.
Исправность лямбда-зондов обычно проверяют во время испытания на выбросы выхлопных газов. Поскольку он подвержен определенному износу, его следует регулярно проверять, чтобы убедиться, что он работает должным образом.
Как часто нужно проверять лямбда-зонд? Ответ: приблизительно каждые 30 000 км, например, при проведении техобслуживания в автосервисе.
За ужесточением законов, направленных на сокращение выбросов выхлопных газов, последовало усовершенствование технологии последующей обработки выхлопных газов.
Коэффициент избытка воздуха λ
При анализе работе двигателя часто применяется термин «стехиометрическое соотношение». Под ним подразумевается оптимальное соотношение кислорода и горючего, при котором подготовленная смесь полностью сгорает. На базе этого показателя рассчитываются режимы ДВС и особенности подачи горючего.
Идеальным считается отношение 14,7 к 1. Понятно, что 14,4 кг воздуха попадают в цилиндр не сразу, а в определенный временной промежуток.
С учетом полученного λ выделяется три варианта:
- 1 — идеальное соотношение;
- меньше 1 — дефицит кислорода и переизбыток бензина;
- больше 1 — нехватка бензина и чрезмерное количество воздуха.
Современные ДВС способны работать во всех случаях, но отклонение от нормы сказывается на многих параметрах: ускорение, экономичность, уменьшение концентрации вредных компонентов и т. д. Оптимально, чтобы коэффициент λ был около 0,9-1.
Виды кислородных датчиков
- При выборе λ-зонда необходимо знать, что они бывают нескольких видов, отличающихся по конструктивным особенностям и эффективности работы. К основным типам стоит отнести:
- Устройства без нагревателя. Бывают 1- и 2-проводными. Встречались в старых моделях автомобилей. В 1-проводной конструкции применяется только один провод для подачи сигнала, а в 2-проводном — общий («земля») и основной. Такие устройства монтируются непосредственно возле выхода из ДВС. Недостаток — неудобное расположение и долгий набор рабочей температуры.
- Λ-зонд с нагревателем — 3-х или 4-проводный датчик с устройством, обеспечивающим быстрое достижение нужной температуры. Нагреватель представлен в виде сопротивления, которое греется при прохождении тока. Сами датчики стоят на выходе системы выхлопа и работают в оптимальном режиме. Во всех современных лямбда-устройствах предусмотрены нагревательные элементы.
- Плоскостные. В качестве активных компонентов применяется глинозем и цирконий. Такая конструкция способствует быстрому нагреву, снижении массы и точным данным. Среднее время нагрева — 5-13 секунд.
- FLO и UFLO—датчик с ускоренным разогревом со специальным нагревателем, обеспечивающим более быстрый набор нужной температуры. Для ее достижения нужно не больше 20 с, что позволяет уменьшить загрязнение от выхлопа.
- На базе диоксида титана. Такие λ-зонды, как правило, применялись на машинах Ниссан в 80-90-х годах и ряде других машин из Европы. Сегодня они не устанавливаются.
- Широкополосные — 5-проводные датчики с новой технологией контроля. Отличаются более высокой точностью, высокой скоростью регулировки и быстрым управлением зажиганием.
- Оригинальные —устанавливаются конкретными производителями и имеют индивидуальный каталожный номер. При их покупке нужно быть внимательным, чтобы избежать ошибки.
- Универсальные — подходят для всех авто, если учесть тип ДВС и модель λ-зонда. Иногда требуется внесение правок в проводку и разъем для подключения мотора. При наличии сомнений в выборе лучше купить лямбда зонд, который рекомендуется заводом-изготовителем (оригинальный вариант),
Статьи по теме
Каркасные шторки: можно ли использовать и как выбрать
Какую жидкость нужно заливать в ГУР
Какие бескаркасные дворники лучше: топ-10 моделей
Уходит антифриз, а подтеков нет: причины и устранение проблемы
Почему не работает омыватель лобового стекла и как устранить неполадку
Датчик уровня антифриза: ремонт или только замена
Ремонт рулевой рейки: этапы и особенности
Можно ли мешать тосол с антифризом: мнение экспертов и автолюбителей
Диагностика рулевого управления автомобиля: почему без нее никак
Не работают дворники: причины неисправности и метода решения проблем
Течет бачок антифриза: поиск неисправности и пути устранения
Стук при повороте руля: основные причины неисправности
Сломалась рулевая рейка: причины и дальнейшие действия
Жидкая резина для автомобиля: преимущества и особенности использования
Стук в рулевой рейке: ищем причину, разбираемся с последствиями
Как работает датчик кислорода
Итак, измерение кислорода в топливной системе происходит в выпускном коллекторе. Здесь обязательно располагается датчик, который определяет кислородные объемы. Второй датчик лямбда зонда может находиться на выходе катализатора для дополнительной точности измерения уровня кислорода.
Чтобы разобраться с механизмом функционирования датчика лямбда зонда рассмотрим алгоритм его работы.
-
- Запустившийся движок прогревается без участия этого элемента. Система автомобиля пользуется другими источниками информации.
А вот когда температура достигает 300 градусов по Цельсию в штатный режим входит кислородный датчик лямбда зонд. Дело в том, что лишь при достижении этой температуры электролит получает проводимость, возникает выходное напряжение на электродах.
В холодное время, например, зимой достичь необходимой температуры бывает очень сложно. На помощь приходит система дополнительного прогрева, которая в любом случае создаст необходимый уровень температуры.
В зависимости от вида используемого датчика концентрации кислорода различает принцип сбора информации.
Принцип работы лямбда зонда двухточечного зависит от электродов. Уровень кислорода влияет на их напряжение. Если уровень напряжение свидетельствует об избытке кислорода, то информация формируется одна, при недостатке кислорода другая.
Широкополосный lambda зонд — более сложная конструкция из двух элементов. На электродах этого датчика имеет постоянное напряжение, которое становится меньше или больше в зависимости от содержания кислорода.
Результаты проверки топлива в каждом случае передаются в другие системы автомобиля для формирования оптимальной смеси для дальнейшего впрыска.
Иллюстрация работы
По каким причинам может быть нарушена работоспособность датчика
Что такое лямбда зонд? — это сложное механическое устройство, которое подвержено поломкам. Они возникают по следующим причинам.
- Некачественный или очень старый корпус устройства может потерять свою герметичность. Вследствие этого происходит проникновение внутрь газов, грязи, воздуха, которые делают корректную работу невозможной.
Несмотря на то, что зонд работает при высоких температурах, он также может быть подвержен излишнему перегреву. Чаще всего это происходит при увеличении заводской мощности мотора техническими энтузиастами.
Существует установленный гарантийный срок работы. После его прохождения зонд может потерять свои свойства.
Использование некачественного дизеля или бензина, а также этилированного топлива разоряет рабочую поверхность датчика и также приводит к его выводу из строя.
Одна из наиболее актуальных причин для нашей страны. Вследствие езды по плохим дорогам внутренние элементы датчика могут быть повреждены. Дальнейшая эксплуатация становится невозможной.
Внешний вид
ВЛИЯНИЕ НЕИСПРАВНОСТИ КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ПРИЧИНА ОТКАЗА
Существует несколько причин, по которым лямбда датчик может выйти из строя:
- Внутренние и внешние замыкания лямбда зонда.
- Нет заземления / напряжения.
- Перегрев зонда.
- Нагар / загрязнение.
- Механическое повреждение датчика
- Использование этилированного топлива / присадок
Существует ряд типичных неисправностей лямбда-датчиков, которые происходят наиболее. В следующем списке приведены причины неисправностей выявленных в результате диагностики:
Неисправности лямбда датчика | Причины |
Защитная трубка или корпус зонда забиты остатками масла | Несгоревшее масло попало в выхлопную систему, например, из-за неисправных поршневых колец или маслосъёмных колпачков |
Нет доступа к эталонному воздуху, воздух не поступает. | Зонд установлен неправильно, контрольное отверстие для воздуха заблокировано |
Повреждение в результате перегрева | Температура превысила 950 °C из-за неправильно выставленного зажигания или проблемы с регулировкой клапанов |
Плохое соединение на контактах | Окисление проводов датчика |
Обрыв проводки | Плохо проложенные провода, перетирание кабеля, укусы грызунов |
Отсутствие заземления | Окисление, коррозия в выхлопной системе |
Механические повреждения | При установке перетянут датчик. Момент затяжки превышен. |
Химическое старение | Частые непродолжительные поездки |
Свинцовые отложения | Использование этилированного топлива |
Диагностика неисправностей для датчика кислорода Лямбда: основные принципы
Автомобили, оснащенные системой самодиагностики, могут обнаруживать неисправности, возникающие в цепи управления, и сохранять их в памяти неисправностей. Обычно это отображается через индикаторную лампу двигателя — «чек», «check engine». Память неисправностей затем может быть считана с помощью сканера через разъём OBD-2. Однако некоторые системы не могут определить, относится ли эта неисправность к неисправному датчику или это неисправность кабеля. В таком случае дальнейшие испытания должны быть выполнены механиком в автосервисе.
Для более точной диагностики через EOBD, мониторинг при компьютерной диагностике лямбда-датчика был расширен, чтобы считывать следующие пункты диагностики:
- Разомкнутая цепь;
- Эксплуатационная готовность;
- Короткое замыкание на массу блока управления;
- Короткое замыкание на плюс;
- Обрыв кабеля и срок службы датчика кислорода лямбда.
Для диагностики сигналов от лямбда-датчика блок управления использует форму частоты сигнала. Для этого блок управления рассчитывает следующие данные:
- Максимальное и минимальное обнаруженное значение напряжения датчика кислорода;
- Время между положительным и отрицательным положением,
- Лямбда-контроллер, регулирующий соотношение в топливо-воздушной смеси — богатая или бедная;
- Определение порога лямбда-контроля,
- Напряжение датчика и длительность периода.
О чем говорят максимальные и минимальные напряжения датчика кислорода?
При запуске двигателя все старые максимальные / минимальные значения в электронном блоке управления удаляются. Во время работы минимальные / максимальные значения отображаются в определенном диапазоне нагрузки / скорости
Амплитуда напряжения датчика: максимальное и минимальное значение больше не достигается, обнаружение насыщенности / обеднения топливной смеси больше невозможно.
Время отклика на изменение напряжения
Если напряжение датчика превышает контрольный порог, начинается измерение времени реакции между положительным и отрицательным состоянием. Если напряжение датчика не достигает контрольного порога, измерение времени прекращается. Период времени между началом и концом измерения времени измеряется счетчиком.
Время отклика: если датчик реагирует слишком медленно на изменение состава смеси то не отображает состояние в нужное время.
Определение старого или загрязненного лямбда зонда
Кислородный датчик может быть неисправенесли он старый, выработал ресурс или загрязнен, например, присадками к топливу. Это можно определить при диагностике зонда. Сигнал лямбда зонда сравнивается с сохраненным шаблоном. Медленный зонд определяется как неисправность, например, через длительность периода сигнала.
Время отклика: частота зонда слишком низкая, оптимальное управление больше невозможно.
Для чего нужен лямбда зонд?
В ситуации поломки автомобиля знание принципа работы механизма не помешает никому. Во-первых, так механику будет сложнее одурачить владельца авто, приписывая к смете ненужные услуги. Во-вторых, водитель обладая знаниями технических особенностей деталей своего авто может сам поставить «диагноз», а возможно и устранить неполадку.
Так для чего же предназначен лямбда зонд? Он создает условия для работы каталитического нейтрализатора, который в свою очередь предназначен для фильтрации выхлопных газов. К слову, катализаторы обязаны своим широким распространением экологам и ярым борцам за чистоту окружающей среды. Именно катализаторы позволяют сделать выхлоп наименее вредным, а лямбда зонд осуществляет контроль за эффективной работой этого механизма.
Лямбда зонд унаследовал свое название от соответствующей буквы греческого алфавита. Также лямбдой принято называть величину количества кислорода в топливно-воздушной смеси, которая составляет 14,7 долей воздуха на 1 долю топлива. Обеспечить такую пропорциональность способен механизм электронного впрыска топлива с обратной связью с лямбда зондом.
%rtb-4%
Также предназначение лямбда зонда определяет его месторасположение – перед катализатором в выпускном коллекторе. Установленный на этом участке, лямбда зонд вычисляет объем излишек кислорода в топливно-воздушной смеси. При появлении дисбаланса прибор дает сигнал в блок управления впрыска. Но, порой одного датчика становится недостаточно, поэтому в последних моделях автомобилей все чаще предусмотрено два датчика кислорода, между которыми располагается катализатор. При такой конструкции контроля точность анализа выхлопа топлива увеличивается в разы.
В основе лямбда зонда гальванические элементы с твердым керамическим электролитом из диоксида циркония. Поверх покрытия нанесен слой оксида иттрия и напыление из токопроводящих пористых платиновых электродов. Электроды на поверхности механизма действуют по принципу забора выхлопа и воздуха из атмосферы. Лямбда зонд начинает работать только после того, как прогрев достигнет 300 градусов по Цельсию. Высокая температура приводит в действие циркониевый электролит, который пропускает сигнал об уровне выходного напряжения. При заведении непрогретого двигателя, датчики кислорода не работают, а их нагрузку при низкой температуре выполняют другие датчики двигателя.
Существуют также датчики, которые используют вместо циркония двуокись титана. Их принцип работы заключается в том, что они изменяют объемное сопротивление по количеству содержания кислорода в выхлопе. Большим минусом этого механизма является то, что они имеют сложную конструкцию и не могут генерировать ЭДС. Однако, именно они включены в конфигурацию многих самых продаваемых моделей автомобилей.
Еще одной разновидностью датчиков являются механизмы с дополнительным подогревом. Такой принцип позволяет им быстрее активизироваться, а значит, результат показателей параметров получается более точный.
%rtb-4%
Использование лямбда-выражения в функции
Пример
Лямбда-выражения можно использовать в теле функции. Лямбда-выражение может получать доступ к любой функции или данным-членам, которые способна использовать включающая функция. Можно явно или неявно захватывать указатель, чтобы предоставить доступ к функциям и элементам данных включающего класса.
Visual Studio 2017 версии 15,3 и более поздних версий (доступно с ): захват по значению ( ), если лямбда-выражение будет использоваться в асинхронных или параллельных операциях, где код может быть выполнен после того, как исходный объект выходит из области действия.
Указатель можно использовать явно в функции, как показано ниже:
Кроме того, указатель можно захватывать неявно:
В следующем примере показан класс , который инкапсулирует значение масштаба.
В примере получается следующий результат.
Remarks
Функция использует лямбда-выражение для выведения произведения масштаба на каждый элемент объекта . Лямбда-выражение неявно захватывает, чтобы он мог получить доступ к элементу.
[]
Лямбда-выражения со стандартными операторами запросов
В LINQ to Objects, наряду с другими реализациями, есть входной параметр, тип которого принадлежит к семейству универсальных делегатов Func<TResult>. Эти делегаты используют параметры типа для определения количества и типов входных параметров, а также тип возвращаемого значения делегата. Делегаты полезны для инкапсуляции пользовательских выражений, которые применяются к каждому элементу в наборе исходных данных. В качестве примера рассмотрим следующий тип делегата Func<T,TResult>:
Экземпляр этого делегата можно создать как , где — входной параметр, а — возвращаемое значение. Возвращаемое значение всегда указывается в последнем параметре типа. Например, определяет делегат с двумя входными параметрами, и , и типом возвращаемого значения . Следующий делегат при вызове возвращает логическое значение, которое показывает, равен ли входной параметр 5:
Лямбда-выражения также можно использовать, когда аргумент имеет тип Expression<TDelegate>, например в стандартных операторах запросов, которые определены в типе Queryable. При указании аргумента Expression<TDelegate> лямбда-выражение компилируется в дерево выражения.
В этом примере используется стандартный оператор запроса Count:
Компилятор может вывести тип входного параметра ввода; но его также можно определить явным образом. Данное лямбда-выражение подсчитывает указанные целые значения (), которые при делении на два дают остаток 1.
В следующем примере кода показано, как создать последовательность, которая содержит все элементы массива , предшествующие 9, так как это первое число последовательности, не удовлетворяющее условию:
В следующем примере показано, как указать несколько входных параметров путем их заключения в скобки. Этот метод возвращает все элементы в массиве до того числа, значение которого меньше его порядкового номера в массиве:
Лямбда-выражения не используются непосредственно в выражениях запросов, но их можно использовать в вызовах методов в выражениях запросов, как показано в следующем примере:
Причины неисправности
Средний срок службы широкополостных датчиков 100–130 тыс. пробега. Значительно сократить работоспособность прибора могут следующие показатели:
- некачественный бензин;
- соляра с большим содержанием серы, присадок;
- использование низкотемпературных герметиков при монтаже (покрытие разрушается, попадает в выпускной коллектор и блок датчика);
- износ масляных колпачков, колец, масло проникает в систему выпускного коллектора;
- некорректно выставленное зажигание, систематическое поступление в цилиндры обогащенной ТВС;
- трещина в корпусе;
- нарушение проводки, нестабильный контакт, обрыв цепи.
Каждая из причин влияет на срок службы кислородного датчика. При замене детали используют только оригинальные изделия, сверяясь по каталожным номерам. Производители настаивают — кислородные широкополостные датчики можно менять только на аналогичные с совпадающими каталожными номерами.
Основные виды лямбда-зондов
В конструкции современного автомобиля могут присутствовать следующие лямбда-зонды:
1. Циркониевый.
Самая популярная модель, которая изготавливается на основе диоксида циркония.
Работает рассматриваемый элемент по принципу гальванического элемента с твердым электролитом в виде специального наконечника.
Изготовленный из керамики и циркония наконечник со всех сторон покрыт защитными пластинами из пористых платиновых электродов, которые выполняют роль проводников тока. Стоит отметить, что свойства электролита активизируются только при нагреве диоксида циркония выше +350 °C. Получается, что лямбда-зонд будет выдавать ошибку, если не прогреется до определенной температуры. Быстрый нагрев устройства осуществляется благодаря встроенной нагревательной конструкции с керамическим изолятором.
Обратите внимание! Повышение температуры до +950 °C может привести к перегреву датчика и его дальнейшей поломке.
Посредством прохождения через небольшие просветы в защитном кожухе выхлопные газы поступают к наружной части наконечника. Воздух, в свою очередь, проникает внутрь датчика через специальную пройму в корпусе устройства или пористую уплотнительную крышку.
Разница потенциалов формируется благодаря перемещению ионов кислорода по электролиту между наружным и внутренним платиновыми электродами.
Напряжение на электродах обратно пропорционально объемам кислорода в выхлопной системе.
При наличии оповещения, поступающего от датчика, блок управления выравнивает содержание компонентов топливовоздушной смеси. Напряжение, поступающее от лямбда-зонда, каждую секунду меняется по несколько раз, что позволяет оптимизировать состав смеси независимо от режима работы ДВС.
В зависимости от количества проводов лямбда-зонды из циркония делятся на несколько групп:
- однопроводные – оснащены одним сигнальный проводом, при этом контакт на массу осуществляется через корпус;
- двухпроводные – имеют сигнальный и заземляющий провода;
- трех- и четырехпроводные – подразумевают наличие системы нагрева, а также подведенных к ней управляющих и заземляющих проводов.
2. Титановый.
Внешне схож с циркониевым, но в данном случае чувствительная деталь датчика изготовлена из диоксида титана. Объемное сопротивление устройства меняется с учетом изменения количества кислорода в смеси: от 1 кОм при богатой смеси до более 20 кОм при бедной. Вместе с этим меняется проводимость титанового элемента, о чем лямбда-зонд сообщает блоку управления. Эффективность датчика рассматриваемого вида достигается только при температуре +700 °C, поэтому без нагревательного элемента здесь не обойтись.
Титановый лямбда-зонд имеет высокую цену и сложную конструкцию, что отрицательно сказывается на популярности данных устройств.
3. Широкополосный.
В отличие от вышеописанных моделей, широкополосные приборы имеют конструкцию, состоящую из двух камер: измерительной и насосной.
В измерительном отсеке поддерживается такой состав газов, при котором лямбда равна единице. Что касается насосной камеры: если мотор работает на бедной смеси, камера убирает лишний кислород из диффузионного зазора в атмосферу, а если на богатой – пополняет диффузионное отверстие недостающим кислородом из внешней среды. Направление тока для перемещения кислорода в разные стороны меняется, а его величина пропорциональна объемам бесцветного газа.
Нормальное функционирование широполосных датчиков возможно при температуре +600 °C, что достигается за счет работы нагревательного элемента в датчике.
Широкополосные датчики кислорода детектируют лямбду от 0,7 до 1,6.