Принцип работы турбины самолета
Содержание:
- Гтд — гпу — типы двигателей – силовые приводы для газовых автономных электростанций
- Использование и электрической и тепловой энергии
- Минусы турбированных двигателей
- Принцип работы двигателя с турбонаддувом
- Проблемы разработки малых ТГД
- Что выбрать? Газопоршневые или газотурбинные установки?
- Принцип работы
- Моторные масла
- Недостатки
- Реактивные, турбореактивные двигатели, их виды и принцип работы
- Принцип работы
- Устройство турбовинтового двигателя и принцип его работы
- Плюсы и минусы двигателя
- Газотурбинный двигатель UGT 15000 Зоря — Машпроект
- Устройство и описание
- Итоги
Гтд — гпу — типы двигателей – силовые приводы для газовых автономных электростанций
Силовыми агрегатами — приводами электрических генераторов для автономных малых тепловых электростанций могут быть дизельные, газопоршневые, микротурбинные и газотурбинные двигатели.
О преимуществах тех или иных генерационных установок и технологий написано большое количество дискуссионных и полемических статей. Как правило, в спорах в загоне, в опале часто остаются либо те либо другие. Попробуем разобраться, почему.
Определяющими критериями выбора силовых агрегатов для строительства автономных электростанций являются вопросы расхода топлива, уровень эксплуатационных затрат, а также срок окупаемости оборудования электростанции.
Важными факторами выбора силовых агрегатов являются простота эксплуатации, уровень технического обслуживания и ремонта, а также место выполнения ремонта силовых агрегатов. Эти вопросы связаны, прежде всего, с расходами и проблемами, которые может иметь впоследствии владелец автономной электростанции.
В данной статье у автора нет корыстной цели расставить приоритеты в пользу поршневой или турбинной технологий. Типы силовых установок электростанций правильнее, оптимальнее всего подбирать непосредственно к проекту, исходя из индивидуальных условий и технического задания заказчика.
При выборе силового оборудования для строительства автономной газовой ТЭЦ желательно консультироваться с независимыми специалистами из инжиниринговых компаний уже осуществляющих строительство электростанций «под ключ». Инжиниринговая компания должна иметь реализованные проекты, на которые можно посмотреть и посетить с экскурсией. Следует учитывать и такой фактор, как слабость и неразвитость рынка генерационного оборудования в России, реальные объемы продаж на котором, в сравнении с развитыми странами, невелики и оставляют желать лучшего – это, прежде всего, отображается на объеме и качестве предложений.
Использование и электрической и тепловой энергии
Если же электростанция должна производить не только электрическую, но и тепловую энергию, то потребуется определить, за счет каких источников можно покрыть тепловое потребление. Таких источников, как правило, два – утилизированная теплота двигателей и/или котельная.
У поршневых двигателей утилизируется теплота охлаждающего масла, сжатого воздуха и выхлопных газов, у газотурбинных – только теплота выхлопных газов. Основное количество теплоты утилизируется из выхлопных газов с помощью утилизационных теплообменников (УТО).
Количество утилизированной теплоты в значительной степени зависит от режима работы двигателя по выработке электроэнергии и от климатических условий. Неверная оценка режимов работы двигателей в зимнее время приведет к ошибкам в определении количества утилизированной теплоты и неправильному выбору установленной мощности котельной.
Графики на рис.2 показывают возможности отпуска утилизированной теплоты от газотурбинных и поршневых двигателей для целей теплоснабжения. Точки на кривых соответствуют данным заводов-изготовителей о возможностях имеющейся техники для утилизации теплоты. На двигателе одной и той же электрической мощности производители устанавливают различные УТО – исходя из конкретных задач.
Преимущества газотурбинных двигателей в части выработки тепла бесспорны. Особенно это касается двигателей электрической мощностью 2–10 МВт, что объясняется относительно низким значением их электрического КПД. По мере роста КПДэ газотурбинных двигателей количество утилизированной теплоты должно неизбежно снижаться.
При выборе поршневого двигателя для электро- и теплоснабжения конкретного объекта необходимость использования котельной в составе электростанции почти не вызывает сомнений. Работа котельной требует увеличения расхода газа сверх необходимого для выработки электроэнергии. Возникает вопрос, как отличаются расходы газа на энергоснабжение объекта, если в одном случае используются только ГТД с утилизацией теплоты выхлопных газов, а в другом – поршневые двигатели с утилизацией теплоты и котельная. Только после досконального изучения особенностей потребления объектом электроэнергии и тепла можно ответить на этот вопрос.
Если принять, что расчетное потребление тепла объектом может быть полностью покрыто утилизированной теплотой ГТД, а недостаток теплоты при использовании поршневого двигателя компенсируется котельной, то можно выявить характер изменения суммарного расхода газа на энергоснабжение объекта.
Используя данные на рис. 1 и 2, можно для характерных точек зон, отмеченных на рис. 1, получить сведения об экономии или перерасходе газа при использовании приводов различного типа. Они представлены в таблице:
Показатель | Варианты | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Мощность электрического газотурбинного/поршневого двигателя, МВт | 0.6/0.6 | 2/2 | 6/6 | 12/12 |
Мощность тепловая газотурбинного/поршневого двигателя, МВт | 1.8/0.6 | 7.0/2.3 | 18/6 | 30/12 |
КПДэ газотурбинного/поршневого двигателя, % | 27/37 | 27/43 | 31/46 | 37/48 |
Перерасход (-) или экономия (+) газа, % | -1 | +15 | +11 | +6 |
Абсолютные значения экономии газа справедливы только для конкретного объекта, характеристики которого были заложены в расчет, но общий характер зависимости отражен правильно, а именно:
при относительно близких значениях электрического КПД (разница до 10%) использование поршневых двигателей и котельной приводит к перерасходу топлива;
- при относительно близких значениях электрического КПД (разница до 10%) использовние поршневых двигателей и котельной приводит к перерасходу топлива;
- при разнице значений КПДэ более 10% для работы поршневых двигателей и котельной потребуется меньше газа, чем для ГТД;
- существует некая точка с максимальной экономией газа при использовании поршневых двигателей и котельной, где разница между значениями КПДэ двигателей равна 13–14%;
- чем выше значение КПДэ поршневого двигателя и ниже – газотурбинного, тем больше экономия газа.
Минусы турбированных двигателей
В целом все минусы турбонаддува состоят в слудующем:
Увеличенный расход топлива. При равных объемах, двигатель с турбонаддувом будет потреблять больше топлива примерно на 20%, но и выдавать лошадиных сил на 70% больше. Для кого то это может быть плюсом, но большинству автовладельцев это может быть и не нужно.
Ресурс турбо двигателя. Поскольку по мощности двигатель становится сильнее, а характеристики общего плана остаются неизменными, происходит износ весьма интенсивного характера основных узлов. Результатом этого является уменьшение ресурсных возможностей двигателя.
Масляное голодание. К недостаткам можно отнести и то, что снижается устойчивость к износу поршневой группы. Ресурс самой турбины существенно снижается. Этому способствует то, что давление со стороны картерных газов возрастает. Если работа в таких условиях наблюдается продолжительное время, то может возникнуть «масляное голодание». Оно в свою очередь может привести к поломке турбокомпрессора
Проблемы со стороны такого важного узла могут обусловить поломку самого мотора. Турбояма и турбо подхват
Существуют такие понятия, как турбояма и турбо подхват
Турбояма и турбо подхват. Существуют такие понятия, как турбояма и турбо подхват
Первая имеет место в ситуациях, когда резко нажимают на педаль газа. Когда происходит преодоление турбоямы, резко увеличивается давление турбонаддува. О явлении турбоямы мы уже писали ранее в статье, кому интересно, можете почитать.
Качественное топливо и масло. Заправлять придется топливо только самого высокого качества, в противном случае турбина может очень быстро умереть. Помимо этого, использование турбин предполагает наличие моторных масел особых сортов. При этом сроков обслуживания непременно надо придерживаться в соответствии с рекомендациями производителя. Высокие требования при этом предъявляются и к воздушному фильтру, который менять придется в 2 раза чаще, чем на атмосферном двигателе.
Дорогостоящий ремонт и обслуживание. Конструкция и устройство турбины довольно сложны и применяются там только качественные материалы, поэтому и стоимость их не маленькая. А если к этому прибавить и дороговизну самой работы, то общая стоимость обслуживания и ремонта выходит круглой суммой. Так, например, стоимость капитального ремонта турбины в хорошем сервисе может составлять от 1000 до 1500 долларов США.
К недостаткам турбированного двигателя можно отнести дорогостоящий ремон и обслуживание турбины
Принцип работы двигателя с турбонаддувом
Работа системы турбонаддува основана на использовании энергии отработавших газов. Отработавшие газы вращают турбинное колесо, которое через вал ротора вращает компрессорное колесо. Компрессорное колесо сжимает воздух и нагнетает его в систему. Нагретый при сжатии воздух охлаждается в интеркулере и поступает в цилиндры двигателя.
Несмотря на то, что турбонаддув не имеет жесткой связи с коленчатым валом двигателя, эффективность работы системы во многом зависит от числа оборотов двигателя. Чем выше частота вращения коленчатого вала двигателя, тем выше энергия отработавших газов, быстрее вращается турбина, больше сжатого воздуха поступает в цилиндры двигателя.
В силу конструкции, турбонаддув имеет ряд негативных особенностей, среди которых с одной стороны задержка увеличения мощности двигателя при резком нажатии на педаль газа — турбояма, с другой — резкое увеличение давления наддува после преодоления турбоямы — турбоподхват.
Система с двумя параллельными турбокомпрессорами применяется в основном на мощных V-образных двигателях (по одному на каждый ряд цилиндров). Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая.
При установке на двигатель двух последовательных турбин максимальная производительность системы достигается за счет использования разных турбокомпрессоров на разных оборотах двигателя. Некоторые производители идут еще дальше и устанавливают три последовательных турбокомпрессора — triple-turbo и даже четыре турбокомпрессора — quad-turbo.
Комбинированный наддув объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический нагнетатель. С ростом оборотов подхватывает турбокомпрессор, а механический нагнетатель отключается. Примером такой системы является двойной наддув моторов TSI от Volkswagen.
Минусы двигателя с турбонаддувомО плюсах мы поговорили в начале статьи, теперь расскажем про минусы двигателя с турбонаддувом. Обратная сторона повышения мощности мотора при сохранении общих характеристик, то есть форсирования, – более интенсивный износ узлов, как следствие, снижение ресурса силовой установки. Кроме того, турбины требуют применения специальных сортов моторных масел и строгого соблюдения рекомендуемых изготовителем сроков обслуживания. Еще более требователен к вниманию владельца воздушный фильтр.
Еще один явный недостаток системы турбонаддува – она очень чувствительна к износу поршневой группы. Возрастание давления картерных газов ощутимо снижает ресурс турбины. При продолжительной работе в таких условиях наступает «масляное голодание» и поломка турбокомпрессора. Причем повреждение этого агрегата вполне может привести к выходу из строя всего двигателя.
Наличие технически сложного турбонаддува двигателя делает мотор автомобиля более сложным, увеличивая число деталей, а значит, снижая общую надежность. К тому же, ресурс самого турбокомпрессора значительно меньше, чем аналогичный показатель двигателя в целом.
Проблемы разработки малых ТГД
При уменьшении размера ГТД происходит уменьшение КПД и удельной мощности по сравнению с обычными турбореактивными двигателями. При этом удельная величина расхода топлива так же возрастает; ухудшаются аэродинамические характеристики проточных участков турбины и компрессора, снижается КПД этих элементов. В камере сгорания, в результате уменьшения расхода воздуха, снижается коэффициент полноты сгорания ТВС.
Снижение КПД узлов ГТД при уменьшении его габаритов приводит к уменьшению КПД всего агрегата
Поэтому, при модернизации модели, конструкторы уделяют особое внимание увеличению КПД отдельно взятых элементов, вплоть до 1%.. Для сравнения: при увеличении КПД компрессора с 85% до 86%, КПД турбины возрастает с 80% до 81%, а общий КПД двигателя увеличивается сразу на 1,7%
Это говорит о том, что при фиксированном расходе топлива, удельная мощность увеличится на ту же величину.
Для сравнения: при увеличении КПД компрессора с 85% до 86%, КПД турбины возрастает с 80% до 81%, а общий КПД двигателя увеличивается сразу на 1,7%. Это говорит о том, что при фиксированном расходе топлива, удельная мощность увеличится на ту же величину.
Что выбрать? Газопоршневые или газотурбинные установки?
Как соотносятся мощность силовых агрегатов электростанций и температура окружающей среды?
При значительном повышении температуры окружающей среды мощность газотурбинной установки падает. Но при понижении температуры электрическая мощность газотурбинной установки наоборот, растет. Параметры электрической мощности, по существующим стандартам ISO, измеряются при t +15 °C.
Иногда важным моментом является и то, что газотурбинная установка способна отдать в 1,5 раза больше бесплатной тепловой энергии, нежели поршневой агрегат аналогичной мощности. При использовании мощной (от 50 МВт) автономной ТЭЦ в коммунальном хозяйстве, например, это может иметь определяющее значение при выборе типа силовых агрегатов, особенно при большом и равномерном потреблении именно тепловой энергии.
Наоборот, там где тепло не требуется в больших количествах, а нужен акцент именно на производстве электрической энергии, будет экономически целесообразнее использование газопоршневых установок.
Высокая температура на выходе газотурбинных установок позволяет использовать в составе электростанции паровую турбину. Это оборудование бывает востребованным, если потребителю необходимо получить максимальное количество электрической энергии при одном и том же объеме потраченного газового топлива, и таким образом достичь высокого электрического КПД — до 59%. Энергокомплекс такой конфигурации сложнее в эксплуатации и стоит он на 30-40% дороже обычного.
Электростанции, имеющие в своей структуре паровые турбины, как правило, рассчитаны на довольно большую мощность — от 50 МВт и выше.
Принцип работы
В основе строения турбированного двигателя лежит вал, который крутится при помощи тяги компрессора и нагнетает быстрым вращением воздух, сжимая его и направляя из статора. Попав в более свободное пространство, воздух сразу же начинает расширяться, пытаясь обрести привычное давление, но в камере внутреннего сгорания он подогревается топливом, что заставляет его расшириться еще сильней.
Единственный путь для выхода воздух под давлением — выйти из крыльчатки. С огромной скоростью он стремится на свободу, направляясь в противоположную от компрессора сторону, к крыльчатке, которая раскручивается мощным потоком, и начинает быстро вращаться, придавая тяговой силы всему движку. Часть полученной энергии начинает вращать турбину, приводя в действие компрессор с большей силой, а остаточное давление освобождается через сопло двигателя мощным импульсом, направленным в хвостовую часть.
Чем больше воздуха нагревается и сжимается, тем сильней нагнетаемое давление, и температура внутри камер. Образовываемые выхлопные газы раскручивают крыльчатку, вращают вал и дают возможность компрессору постоянно получать свежие потоки воздуха.
Моторные масла
Масло для турбированных бензиновых или дизельных двигателей должно соответствовать рекомендациям завода-изготовителя авто. Не поленитесь, найдите инструкцию по эксплуатации. Там должно быть все подробно описано, начиная от допусков, заканчивая стандартами и вязкостью.
Если таковую не нашли, то рекомендуется использовать синтетические масла вязкостью 30. Например 5W-30 или 0W-30. Обязательно смотреть допуск. Например, для турбодвигателей Skoda он составляет 502,00. На канистре обозначается 502000.
Хочется еще отметить, что вязкость изменяется от температурного режима, где оно работает. В подшипнике турбины температура достигает больших значение. Чем выше она, тем вязкость становится ниже. Значит, нам нужно масло, которое сможет сохранять свои характеристики при температурах выше 100 градусов.
За это отвечает критерий «кинематическая вязкость». В 0W-40 она составляет 12,5. Вязкость W-30 – 9,3. Использовать ГСМ с более низкой вязкостью может быть опасно. При высоких температурах оно станет жидким, плохо будет смазывать поверхности подшипника турбины. Например, концерн Шкода рекомендует для своих турбированных двигателей заливать масло 0W-40.
Редакция «За рулем» провела испытание масел на разных пробегах. Пришла к выводу, что если мотор и турбина эксплуатируется в теплое время года и не имеют большого износа, то можно придерживаться заявленного заводом интервала замены масла. Если движок и его агрегаты уже «видали виды», то интервал нужно сократить. Вязкость при высоких температурах, которые наблюдаются в турбонагнетателе, при больших пробегах возрастает, что свидетельствует таблица результатов теста:
Кроме того. Если у вас трассовый пробег, то желательно интервал замены масла в турбомоторах сократить до 5-6 тысяч. Это связано с постоянными нагрузками на турбонагнетатель, постоянным её разогревом. В городе он испытывает меньше нагрузок, так как работает в пол силы.
Недостатки
Сегодня имеются следующие способы решения проблемы инертности турбонаддува:
- битурбонаддув (двойной наддув);
- турбина с адаптивной геометрией;
- комбинированный наддув.
При двойном турбонаддуве применяются две небольшие турбины, которые в совокупности работают намного быстрее, чем одна с номинальным размером. Число цилиндров распределяется между этими турбинами поровну. Аналогом такой системы может быть применение нескольких компрессоров, которые приходят в движение на разных оборотах мотора, каждый в своем режиме.
Турбина с адаптивной геометрией способна изменять размер впускного канала и тем самым регулировать силу потока выхлопных газов, что также повышает эффективность работы системы.
Комбинированный наддув состоит из турбокомпрессора и механического нагнетателя. Нагнетатель создает нужное давление на малых оборотах, но как только обороты возрастают до определенной величины, в работу включается турброкомпрессор.
Высокая температура. Как уже было сказано, сжатие воздуха влечет за собой его нагрев, что отражается на работе мотора не самым лучшим образом. Поэтому зачастую приходится подключать дополнительное охлаждение, и на это уходит часть энергии.
Однако несмотря на перечисленные недостатки, турбонаддув – это отличное средство для повышения мощности и эффективности ДВС, а также его экономичности. Кроме того, многолетний опыт специалистов показывает, что варианты усовершенствования этой системы еще не исчерпаны.
Видео об особенностях и принципах работы турбонаддува
Реактивные, турбореактивные двигатели, их виды и принцип работы
- 1
- 2
- 3
- 4
- 5
( 36 Votes )
При всей своей мощи и кажущейся невероятной сложности – ракетные и турбореактивные двигатели на самом деле имеют довольно простой принцип работы.
Самым простым является ракетный двигатель. Начнем с него.
Для того, чтобы работать в условиях космоса, ракетные двигатели должны иметь собственный запас кислорода для обеспечения сжигания топлива. Топливо-воздушная смесь впрыскивается в камеру сгорания, где происходит ее постоянное сжигание. Образующийся во время сгорания газ под очень большим давлением высвобождается наружу через сопло, создавая реактивную силу и заставляя ракетный двигатель, а вместе с ним и ракету двигаться в противоположном направлении. Наглдный пример реактивной силы в повседневной жизни это обычный воздушный шарик. Если его надуть и отпустить, не завязывая, то шарик будет двигаться за счет реактивной силы, создаваемой вылетающим из него воздухом.
Турбореактивный двигатель (ТРД)
Турбореактивный двигатель (ТРД) работает по тому же принципу, что и ракетный, за исключением того, что в нем сжигается атмосферный кислород.
Сходства:Топливо постоянно сжигается внутри камеры сгорания турбины. Освобождающийся через сопло газ создает реактивную силу.
Различия:На выходе из сопла установлены несколко ступеней турбины, закрепленные на общем валу. проходя через лопатки турбин газ приводит их во вращение. Между колесами турбин установлены неподвижные направляющие лопатки, которые придаю определенное направление потоку газа на пути ко следующей ступени (колесу) турбины, что создает более эффективое вращение.
Вместе с турбиной на едином валу в передней части двигателя установлен компрессор, который служит для сжатия и подачи воздуха в камеру сгорания.
Турбовинтовой двигатель (ТВД).
Принцип работы точно такой же как и у ТРД, за исключением того, что на валу перед компрессором установлен редуктор, приводящий во вращение воздушный винт с более низкими оборотами, чем турбина.Получение мощности, необходимой для вращения ротора компрессора и воздушного винта, обеспечивается турбиной с увеличенным числом ступеней, поэтому расширение газа в турбине происходит почти полностью и реактивная тяга, получаемая за счет реакции газовой струи, вытекающей из двигателя, составляет только 10–15% суммарной тяги, в то время как воздушный винт создает основное тяговое усилие (85–90%).
ТВД сочетают в себе преимущества ТРД на больших скоростях полета (способность создавать большую тягу при относительно небольшой массе и габаритах двигателя) и ПД на малых скоростях (низкие расходы топлива) и, обладая высокой топливной эффективностью, широко применяются в силовых установках имеющих большую грузоподъемность и дальность полета самолетов (летающих на скоростях 600–800 км/ч) и вертолетов.
Турбовентиляторный двигатель (ТВлД)
Этот двигатель является неким копромиссом между турбореактивным и турбовинтовым двигателем. У турбовентиляторного двигателя (ТВлД) на валу перед компрессором установлен вентилятор, имеющий большее количество лопаток, чем воздушный винт и обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлете.
Новости СМИ2
kaz-news.ru | ekhut.ru | omsk-media.ru | samara-press.ru |
Принцип работы
Принцип работы ТВВД в общих чертах напоминает принцип работы двухконтурного турбореактивного двигателя, коим он в определенной степени и является. Поток воздуха попадает в первый контур – корпус двигателя. Там он попадает в осевой компрессор на его подвижные лопатки, которые сжимают его и вытесняют в направлении неподвижные лопаток, придающих ему осевое направление движения. Ряд неподвижных и подвижных лопаток – это ступень компрессора, и чем больше таких ступеней, тем выше степень сжатия воздуха.
После сжатия в компрессоре воздушный поток под давлением поступает в камеру сгорания, где находятся топливные форсунки и воспламенители. Сама камера сгорания может быть кольцевой или же состоять из нескольких отдельных жаровых труб. В ней воздух перемешивается с впрыснутым через форсунки топливом, образуя топливный заряд, который воспламеняется и сгорает, образуя расширенные газы.
Продукты горения в виде газов, находящихся под высоким давлением, выходят из камеры сгорания и попадают на лопасти турбины. Турбина, как и компрессор, имеет неподвижные и подвижные лопатки, только устанавливаются они наоборот: сначала газы проходят через неподвижные лопасти, выравнивая свое направление, а затем попадают на подвижные, отдавая им часть своей энергии. За счет воздействия газов на лопатки турбина вращается, приводя в движение компрессор, закрепленный с ней на одном валу. Как и компрессор, турбина состоит из нескольких ступеней, но их количество не превышает 5-ти.
В турбовинтовентиляторном двигателе кроме основной турбины есть еще одна, вращающая винтовентилятор, и эти турбины работают независимо одна от другой. Вал привода вентилятора обычно размещается внутри вала привода компрессора, при расположении винтовентилятора в передней части двигателя. Если винтовентилятор располагается в задней части ТВВД, то свободная турбина связана напрямую с винтами через корпус, что упрощает конструкцию. Турбина винтовентилятора размещена за основной турбиной и приводится в движение все теми же газами.
После прохождения турбин отработанные газы, все еще имеющие высокую скорость и температуру, выходят наружу через сопло, образуя реактивную тягу. Сопло в самом простом исполнении – это сужающаяся труба, но в некоторых случаях можно регулировать ее сечение и даже направленность выхода реактивного потока.
Устройство турбовинтового двигателя и принцип его работы
Конструкция мотора:
- редуктор;
- воздушный винт;
- камера сгорания;
- компрессор;
- сопло.
Схема турбовинтового двигателя выглядит следующим образом: после нагнетания и сжатия компрессором воздух попадает в камеру сгорания. Туда же впрыскивается топливо. Полученная смесь воспламеняется и создает газы, которые при расширении поступают в турбину и вращают ее, а она, в свою очередь, вращает компрессор и винт. Нерастраченная энергия выходит через сопло, создавая реактивную тягу. Так как величина ее не является существенной (всего десять процентов), не считается турбореактивным турбовинтовой двигатель.
Плюсы и минусы двигателя
Газовая турбина, как и паровая, развивает большие обороты, что позволяет ей набирать хорошую мощность, несмотря на свои компактные размеры.
Охлаждается турбина очень просто и эффективно, для этого не нужно каких-либо дополнительных приборов. У нее нет трущихся элементов, а подшипников совсем немного, за счет чего движок способен функционировать надежно и долгое время без поломок.
Главный минус подобных агрегатов в том, что стоимость материалов, из которых они изготавливаются довольно высокая. Цена на ремонт газотурбинных двигателей тоже немалая. Но, несмотря на это они постоянно совершенствуются и разрабатываются во многих странах мира, включая нашу.
Газовую турбину не устанавливают на легковые автомобили, прежде всего из-за постоянной нужды в ограничении температуры газов, которые поступают на турбинные лопатки. Вследствие этого понижается КПД аппарата и повышается потребление горючего.
Сегодня уже придуманы некоторые методы, которые позволяют повысить КПД турбинных двигателей, например, с помощью охлаждения лопаток или применения тепла выхлопных газов для обогрева воздушного потока, который поступает в камеру. Поэтому вполне возможно, что через некоторое время разработчики смогут создать экономичный двигатель своими руками для автомобиля.
Среди главных преимуществ агрегата можно также выделить:
- Низкое содержание вредоносных веществ в выхлопных газах;
- Простота в обслуживании (не нужно менять масло, а все детали обладают износостойкостью и долговечностью);
- Нет вибраций, поскольку есть возможность запросто сбалансировать вращающейся элементы;
- Низкий уровень шума во время работы;
- Хорошая характеристика кривой крутящего момента;
- Заводиться быстро и без затруднений, а отклик двигателя на газ не запаздывает;
- Повышенная удельная мощность.
29.07.2017 12:42
Эксплуатация свободной силовой турбины весомо отражается на закономерностях влияния общих элементов двигателя, способах их регулирования. Кроме того, это оказывает влияние на конструктивные формы. Существенной для Т.д. является частота вращения свободной турбины.
Режим работы на форсаже воздушно-реактивного двигателя осуществляется с помощью дополнительной камеры сгорания, или ФКС, которая устанавливается за основной камерой сгорания и турбиной. Во время запуска форсажа происходит сжигание дополнительного горючего в ФКС, при этом происходит интенсивный нагрев рабочего тела, который приводит к увеличению скорости его истечения из сопла и росту тяги двигателя.
За счет жаропрочности и жаростойкости лопаток турбины температура газов за основной камерой сгорания лимитируется. Установив форсаж за турбиной дополнительной камеры сгорания можно обойти это ограничение. Главным недостатком данного решения является резкое падение экономичности конструкции установки двигателя.
Переход двигателя из обычного режима работы на форсаж производится лишь в том случае, когда необходимо энергично разогнать летательный аппарат или перейти на полет повышенной скорости. Форсаж незаменим при маневрах летательного средства, обходе ПВО, выходу из боя и в прочих ситуациях, где необходимо резко увеличить тягу двигателя.
ТУРБОВАЛЬНЫЙ ДВИГАТЕЛЬ ВК-2500. TURBOSHAFT ENGINE VK-2500
ВОЕННО-ТЕХНИЧЕСКОЕ СОТРУДНИЧЕСТВО
09.08.2018 АО «ОДК-КЛИМОВ» ПРИЗНАНО ОКБ ГОДА ЗА СОЗДАНИЕ НОВОГО ВЕРТОЛЕТНОГО ДВИГАТЕЛЯ ВК-2500ПС-03
08.11.2018 ОДК ПРЕДСТАВИЛА В КИТАЕ НОВЕЙШИЙ РОССИЙСКИЙ ВЕРТОЛЕТНЫЙ ДВИГАТЕЛЬ ВК-2500ПС-03
AIRSHOW CHINA 2018 – THE 12TH CHINA INTERNATIONAL AVIATION & AEROSPACE EXHIBITION
29.12.2018 «ВЕРТОЛЕТЫ РОССИИ» ПРОВЕЛИ В КИТАЕ ДЕМОНСТРАЦИОННЫЕ ПОЛЕТЫ МИ-171 С НОВЫМ ДВИГАТЕЛЕМ
AERO INDIA 2019 12-Я АВИАКОСМИЧЕСКАЯ ВЫСТАВКА ВОЕННО-ТЕХНИЧЕСКОЕ СОТРУДНИЧЕСТВО
17.05.2019 ОДК-КЛИМОВ РАЗРАБОТАНА ПРОГРАММА МОДЕРНИЗАЦИИ СИЛОВЫХ УСТАНОВОК ВЕРТОЛЕТНОЙ ТЕХНИКИ
ВОЕННО-ТЕХНИЧЕСКОЕ СОТРУДНИЧЕСТВО
26.11.2019 СЕРТИФИКАТ ТИПА РОССИЙСКОГО ВЕРТОЛЕТНОГО ДВИГАТЕЛЯ ВК-2500ПС-03 ВАЛИДИРОВАН В КОЛУМБИИ
ВОЕННО-ТЕХНИЧЕСКОЕ СОТРУДНИЧЕСТВО
21.01.2020 УЛУЧШЕНЫ РЕСУРСНЫЕ ПОКАЗАТЕЛИ ДВИГАТЕЛЯ ВК-2500ПС-03
Газотурбинный двигатель UGT 15000 Зоря — Машпроект
Трехвальный ГТД Компрессоры – осевые, КНД -9 ступеней, КВД — 10 ступеней. Камера сгорания – трубчато-кольцевая, противоточная, 16 трубная Турбины компрессоров – осевые, одноступенчатые. Силовая турбина – осевая, 3 и 4 ступени Запуск – раскруткой ротора ТКНД двумя электростартерами переменного тока длительной мощностью по 30 кВт каждый
В условиях по ISO 2314
Двигатель | UGT15000 ДБ90 |
Мощность ГТД, кВт | 10500 |
КПД ГТД, % | 36,0 |
Удельный расход топливного газа (Hu = 8555 ккал/нм³), нм³/(кВт ч) | 0,279 |
Суммарная степень повышения давления в компрессорах | 19,0 |
Расход газа на выходе из ГТД, кг/с | 36,0 |
Температура газа на выходе из ГТД, оС | 490 |
Частота вращения силовой турбины, об/мин | 4800 |
На основе этого двигателя завод «Зоря-Машпроект» выпускает следующие энергоустановки:
Простого цикла
Тип установки | Мощность, kBт | КПД (ISO), % | Расход топлива | Выхлопные газы | ||
газа, м 3 /ч | жидкого, кг/ч | расход, кг/с | температура, °С | |||
UGT 15 000 | 17 500 | 35,0 | 5020 | 4215 | 72,0 | 414 |
UGT 15 000+ | 20 000 | 36,0 | 5560 | 4680 | 71,0 | 454 |
Когенерационная
Тип установки | Мощность, kВт | КПД электрический, % | КИТ, % | Расход | |||||
электрическая | паровая | водогрейная | паровой | паровой + водогрейный | пара,т/ч | топливного газа, м 3 ч | жидкого топлива, кг/ч | ||
UGT 15000C | 16000 | 19500 | 4390 | 32,5 | 72,1 | 81 | 24,4 | 4940 | 4150 |
Тип установки | Мощность электрическая, кВт | КПД электрический, % | Расход пара, т/ч | Расход топлива | |||
STIG | сухая | STIG | сухая | газа, м 3 /ч | жидкого, кг/ч | ||
UGT 15000S1 | 25 000 | 11 400 | 42,0 | 28,3 | 24,0 | 5980 | 5020 |
Установка типа «Водолей»
Тип установки | Мощность электрическая, кВт | КПД электрический, % | Расход пара, т/ч | Расход топлива | |||
STIG | сухая | STIG | сухая | газа, м 3 /ч | жидкого, кг/ч | ||
UGT 15000S2А | 24 500 | 11 400 | 41,0 | 28,3 | 24,0 | 5960 | 5020 |
Комбинированная парогазовая установка
Тип установки | Количество и тип двигателей | Мощность электрическая, кВт | КПД электрический, % | Расход топлива | |
газа, м 3 /ч | жидкого, кг/ч | ||||
UGT 15 000 CC1 | 1 х UGT15 000 + 1 ПТ | 22 700 | 45,3 | 4 940 | 4 150 |
UGT 15 000 CC2 | 2 х UGT15 000 + 1 ПТ | 45 800 | 45,9 | 9 880 | 8 300 |
Устройство и описание
Газотурбинные установки состоят из двух основных частей, расположенных в одном корпусе, – газогенератора и силовой турбины.
В газогенераторе, включающем в себя камеру сгорания и турбокомпрессор, создается поток газа высокой температуры, воздействующего на лопатки силовой турбины.
При помощи теплообменника производится утилизация выхлопных газов и одновременное производство тепла через водогрейный или паровой котел.
Работа газотурбинных установок предусматривает использование двух видов топлива – газообразного и жидкого.
В обычном режиме ГТУ работает на газе.
В аварийном или резервном при прекращении подачи газа осуществляется автоматический переход на жидкое (дизельное) топливо.
В оптимальном режиме газотурбинные установки комбинированно производят электрическую и тепловую энергию. Турбоагрегаты используются на электростанциях как для работы в базовом режиме, так и для компенсирования пиковых нагрузок.
Итоги
Выбирать автомобиль с турбированным или атмосферным агрегатом стоит, исходя из своих личных предпочтений и возможностей. У каждого из этих типов моторов есть свои плюсы и минусы. Турбодвигатель будет мощнее и динамичнее, однако требователен в уходе и обходится дороже. Атмосферный двигатель не такой мощный, зато гораздо дешевле в плане эксплуатации и ремонта.
В наличии в компании Favorit Motors имеется множество разных моделей автомобилей как с атмосферными двигателями, так и с турбированными. Компетентный персонал поможет подобрать автомобиль, исходя из пожеланий и предпочтений каждого клиента.
Как турбированный, так и атмосферный силовой агрегат со временем может начать работать с перебоями или вообще отказать. Современные модели автомобилей оснащены высокотехнологичными электронными системами управления двигателем, поэтому диагностику и ремонт моторов следует выполнять только в специализированных автосервисах.
Специалисты компании Favorit Motors напоминают, что своевременное регламентное обслуживание способно значительно продлить срок эксплуатации силового агрегата. Необходимо регулярно менять масло в соответствии с пробегом и устранять выявленные неисправности.