Принцип работы турбины на дизельном двигателе

Турбокомпаунд

Принцип турбокомпаунда состоит в утилизации дополнительной тепловой энергии выхлопных газов, которая в простых турбо- и атмосферных двигателях буквально вылетает в трубу, посредством еще одной турбины и механического ее привода на коленвал двигателя. КПД обычного грузового турбодизеля большого объема составляет около 44%, еще 21% съедает система охлаждения. Турбокомпаунд частично улавливает энергию тех 35%, которые покидают двигатель вместе с выхлопом. Особенность турбокомпаунда в том, что прибавка момента и мощности двигателя происходит без дополнительного расхода топлива.

Был впервые применен фирмой Scania в 1990 году на дизельном двигателе DTS 11 01 объемом 11 литров.

Использование на атомных станциях

Конструкцию турбины на атомных станциях можно рассмотреть на примере установок насыщенного пара, они находятся только на объектах, на которых применяется водяной теплоноситель. В этом случае нужно отметить, что изначальные показатели турбин на АЭС отличаются низкими параметрами. Это вынуждает использовать больше рабочего вещества, чтобы достигнуть требуемого результата. Помимо того, из-за этого появляется высокая влажность, быстро нарастающая по ступеням турбины. Это приводит к тому, что на атомных станциях применяются внешние влагоулавливающие и внутритурбинные конструкции.

Из-за повышенной влажности пара понижается КПД, а также очень быстро развивается коррозийный износ проточных элементов. Чтобы не допустить этой проблемы, приходится применять разные способы укрепления поверхности. К этим методам относится электроискровая шлифовка, закаливание, хромирование. Если на остальных объектах можно установить простейшую конструкцию турбин, то на атомной станции необходимо подумать не только о защите от коррозийных процессов, но и о выводе влаги.

Самым эффективным вариантом вывода излишней влаги из турбины является отбор пара, он передается на регенеративные подогреватели. Здесь нужно сказать, что если эти отборы находятся после каждой ступени расширения, то нет необходимости дополнительно разрабатывать внутритурбинные влагоулавливатели. Также необходимо отметить, что допустимая норма влажности пара рассчитывается с учетом размера лопатки и ее скорости вращения.

Преимущества турбонаддува

В техническом отношении этот процесс не представляет ничего сложного. Нагнетатель представляет собой устройство, состоящее из двух колес – компрессорного и турбинного. Турбинное колесо захватывает выхлопные газы, приводящие его в движение. В результате начинает вращаться и компрессорное колесо, которое и служит для сжатия воздуха.

Компрессор в обязательном порядке контактирует с системой охлаждения, потому что в процессе действия его температура поднимается довольно высоко. Сила наддува регулируется с помощью перепускного клапана. В случае необходимости он может переводить часть выхлопа мимо турбины, чтобы понизить внутрисистемное давление.

Повышение мощности двигателя без увеличения его объема и массы. Технология турбонаддува позволяет повышать мощность двигателя без увеличения объема цилиндров и их количества. В результате легкие и небольшие по размеру моторы приобретают отличные характеристики, и, кроме этого, сокращается общая масса автомобиля, уменьшаются тормозной путь и время разгона.

Экономичность. Расход топлива у двигателей, оснащенных системой турбонаддува, в разы меньше, нежели расход топлива у мотора такой же мощности с простым атмосферным нагнетанием воздуха. Это объясняется тем, что в цилиндрах с турбонаддувом на один ход поршня тратится намного меньше топлива за счет полного его сгорания. То есть, бедная смесь компенсируется дополнительным напором воздуха, и в результате мощность увеличивается.

Принцип работы турбокомпрессора и его недостатки

Видео: Принцип работы турбокомпрессора (турбины)

Принцип работы турбонаддува достаточно прост: выхлопные газы поступают в камеру турбинного колеса и заставляет его вращаться. Вращаясь, он чрез ротор приводит в движение турбокомпрессор. Тот в свою очередь засасывает воздух, сжимает его и подает в интеркулер для охлаждения. После прохождения интеркулера воздух под давлением подается во впускной коллектор. Работа наддува контролируется и регулируется регулятором давления, который дозирует количество отработанных газов, поступающих в камеру турбинного колеса. Благодаря этому осуществляется возможность изменения производительности турбонаддува в зависимости от вращения коленчатого вала.

Но такая конструкция имеет один существенный недостаток – при резком открытии дроссельной заслонки турбонаддув не успевает обеспечить необходимое количество воздуха для подачи в цилиндры. Для этого ему требуется определенное время. Выливается это в образование негативного эффекта, который получил название «турбояма». То есть, водитель резко нажимает на педаль газа, рассчитывая резко ускориться, но из-за нехватки воздуха ускорения сразу не происходит. Автомобиль начнет набирать обороты только после того, как наддув обеспечит необходимое количество воздуха. Вслед за «турбоямой» возникает еще один негативный эффект – «турбоподхват». Происходит он после «турбоямы» и сопровождается увеличенным давлением в турбонаддуве из-за интенсивной работы компрессора.

Для решения проблемы появления существует несколько способов. Первый из них – использование комбинированного наддува (состоящего из механического нагнетателя и турбонагнетателя). На начальном этапе при резком нажатии на педаль газа давление в выпускном коллекторе обеспечивает механический нагнетатель, работа которого не зависит от выхлопных газов, после в работу вступает турбонагнетатель, а механический отключается.

Видео: Устройство и неисправности турбины

Вторым способом преодоления «турбоямы» является использование двойного турбонаддува, так называемого «twin-turbo». Двойной турбонаддув обычно применяется на V-образных двигателях.

И третий способ – использование турбонаддува с изменяемой геометрией. В такой турбине воздушный поток оптимизируется за счет изменения площади канала, по которому подается воздух.

Как работает турбина на дизельном двигателе

Ротор и ось, на которой он закреплен, вращаются в разных направлениях. Частота вращения довольно велика, поэтому элементы плотно прижимаются друг к другу.

Принцип работы турбины на дизельном двигателе следующий:

  • компрессор обеспечивает поступление воздуха из окружающей среды, который смешивается с дизельным топливом и затем направляется в цилиндры;
  • топливно-воздушная смесь загорается, начинают двигаться поршни. По ходу этого процесса образуются газы, поступающие в выпускной коллектор;
  • скорость движения газов, оказавшихся в корпусе, значительно возрастает. Вступая во взаимодействие с ротором, они приводят его во вращающееся положение;
  • вращение передается компрессорному ротору (за это отвечает вал), который снова втягивает новую порцию воздуха.

Таким образом, принцип работы основывается на взаимосвязи: чем сильнее вращается ротор, тем больше поступает воздуха, но при этом ротор увеличивает скорость вращения, если количество воздуха возрастает.

Принцип действия турбокомпрессора, его работа, для чего нужен

Компрессор турбоустановки плотно закреплен с выпускным коллектором силовой установки с помощью болтового соединения. Выхлопные газы из выпускной системы попадают в турбинный корпус с помощью специально отведенных каналов и производят раскрутку турбины, работающей по принципу газотурбинного двигателя. Вал осуществляет соединение турбины компрессорной установкой, расположенной на стыке воздушного фильтра и впускного коллектора.

Выхлопные газы попадают на поверхности лопаток турбины, тем самым осуществляя ее вращение. Чем больше объем потока выхлопных газов, тем выше скорость вращения турбоустановки. Компрессорная установка по типу напоминает насос центробежного действия.

Работа его осуществляется следующим образом: отработанные газы попадают на поверхности лопастей крыльчатки, после чего происходит разгон их в сторону центра компрессорного колеса и дальнейший выход их по воздухопроводам в полость впускного коллектора.

Который в свою очередь обеспечивает попадание их в цилиндры двигателя.  Компрессор осуществляет сжатие воздуха и организацию последующего поступление его в рабочие камеры цилиндров.

Как увеличить срок службы турбокомпрессора?

Турбокомпрессор нуждается в постоянной масляной смазке. Когда вы запускаете автомобиль, то, как правило, первые секунды турбокомпрессор работает в режиме нехватки масляной смазки. Поэтому не советуем владельцев турбированных автомобилей трогаться с места сразу после запуска двигателя. Так что после того, как вы запустили мотор, подождите около 30 секунд, пока турбина равномерно не смажется маслом.

В крайнем случае вы можете все-таки тронуться с места сразу после запуска двигателя, но в таком случае езжайте на небольшой скорости (на низких оборотах двигателя). Таким образом вы избежите преждевременного износа внутренних компонентов турбины.

Также не советуем вам выключать двигатель после движения на высокой скорости. Дело в том, что если после движения на больших оборотах двигателя вы сразу заглушите мотор, то турбина еще будет крутиться по инерции еще около 20 секунд фактически без смазки, поскольку система масляной смазки работает только при включенном двигателе.

Кроме того, чтобы турбина преждевременно не вышла из строя, вы должны использовать моторное масло, только рекомендованное автопроизводителем. Желательно, если вы будете приобретать масло у официальных дилеров. Так вы снизите риск купить поддельное некачественное моторное масло, которое может не только в короткий срок вывести турбокомпрессор из строя, но и существенно снизить ресурс двигателя.

Турбина с сервоприводом

Рассмотрим подробнее турбокомпрессор с электронным исполнительным механизмом (с сервоприводом). Существует два основных типа отказов сервопривода: механический и электронный. Выход из строя механической части электронного исполнительного механизма в основном вызван неисправностью (заклиниванием, заклиниванием, выходом из строя) механизма изменяемой геометрии турбокомпрессора

В свою очередь, повреждение или полный отказ механизма переменной геометрии (в основном связанного с ротором (валом) турбонагнетателя) вызваны повреждением двигателя (детали клапана, седла или направляющей клапана, детали поршня) или, что важно, поврежденный воздуховод или фильтр, а иногда и сломанный клапан EGR

Принцип работы и устройство турбокомпрессора

Рассмотрим, как работает турбина в автомобиле. Поток выхлопных газов поступает из выпускного коллектора в горячую часть турбины, там воздействует на лопасти крыльчатки, приводя ее в движение вместе с валом. На нем закреплена также крыльчатка компрессора, расположенного в холодном отсеке турбины. Она при вращении повышает давление в системе впуска, обеспечивая увеличенное поступление в камеру сжигания топлива и воздуха.

Схема работы турбины

Устройство турбины автомобиля не сложное, она состоит из:

  • Улитки компрессора, которая всасывает воздух, а затем нагнетает его в коллектор впуска;
  • Улитки, расположенной в горячей части – здесь выхлопные газы заставляют вращать турбину, после чего выбрасываются в систему отработанных газов на выход;
  • Крыльчатки компрессора, а также ее аналога в горячей части;
  • Шарикоподшипникового картриджа;
  • Корпуса, соединяющего улитки, имеющего систему охлаждения и системы подшипников.

Общее устройство турбины

Во время работы устройство подвергается значительным термодинамическим нагрузкам. Попадающие в турбину выхлопные газы достигают температуры 900°С, из-за чего ее корпус делают чугунным, причем для отливки используется особая технология. Обороты турбинного вала могут достигать показателя 200 000 об/мин, поэтому в конструкцию устанавливают высокоточные детали, которые тщательно подгоняют и затем балансируют. Также для турбины предъявляются высокие требования к смазочным материалам. Отдельные турбонагнетатели оборудованы так, что система смазки является одновременно охлаждением узла подшипников.

Характеристика

Турбина – это элемент впускной системы двигателя, который служит для увеличения давления воздуха за счет применения энергии отработавших газов. Благодаря ее работе, возрастает масса воздуха в камере сгорания.

Это позволяет ускорить такты работы двигателя и увеличить его крутящий момент. Также отметим, что первые турбины имели механический привод. Принцип работы такой турбины заключался в преобразовании энергии от коленчатого вала. С последним элемент соединялся путем ременной передачи. Но вскоре такие агрегаты перестали использоваться. Сейчас все производители применяют газовую турбину, принцип работы которой позволяет увеличить КПД двигателя на 80 процентов вместо 30.

Типы турбин

На данный момент существует несколько популярных типов компрессоров:

  • Раздельный. Он имеет два сопла для каждой пары цилиндров и два входа для отработавших газов. Первое сопло предназначено для быстрого реагирования, второе служит для максимальной производительности. В конструкции есть разделенные выпускные каналы. Сделано это для предотвращения перекрытия каналов при выпуске выхлопных газов.
  • Компрессор с переменным соплом. Также он известен, как турбина с изменяемой геометрией. Применяется на моторах с маркировкой TDI от «Фольксваген». Здесь в конструкции имеется 9 подвижных лопастей. Они могут регулировать поток выхлопных газов, что идут к турбине. Угол наклона лопастей – регулируемый, что позволяет согласовать давление нагнетаемого воздуха и скорость движения газов с оборотами ДВС.

Для большей производительности на автомобиль может быть установлено два компрессора. Такие системы получили маркировку «Твин-турбо».

Принцип работы турбокомпрессора

На рисунке показана работа (движение, изменение направления лезвия) механизма с изменяемой геометрией, приводимого в действие электронным исполнительным механизмом. На низких оборотах двигателя лопасти с изменяемой геометрией находятся в полузакрытом или почти закрытом состоянии (этот зазор имеет значение), замыкая поток отработанного воздуха, таким образом воздействуя на край турбинного колеса (крыльчатки) лопаток в максимально возможной степени. . Автомобиль готов к работе и теперь все зависит от количества выхлопных газов, то есть давления на педаль газа. В этом положении геометрических лопастей произойдет максимальный прогиб, то есть максимальное ускорение. Когда лопасти механизма с изменяемой геометрией открываются, направление потока выхлопных газов изменяется по направлению к центру рабочего колеса, и расход уменьшается за счет открытия лопастей, что сводит к минимуму воздействие на лопатки статора турбины.

Есть спорный вопрос с описанием на веб-сайте механизма переменной геометрии, то есть в каком положении лопастей геометрии происходит ускорение автомобиля, но если совместить теорию с практикой, это именно так, как описано выше.

В случае вакуумного цилиндра операция аналогична, проще и дешевле в обслуживании. Мембрана и сам корпус привода повреждены (коррозия). Чтобы получить правильную и максимальную производительность турбокомпрессора, необходимо отрегулировать электронный исполнительный механизм с помощью специального электронного оборудования (тестера исполнительных механизмов). Тестер привода может использоваться либо в стационарном режиме для регулировки турбокомпрессора, который был снят с двигателя, либо в переносном режиме от аккумуляторной батареи для управления непосредственно на транспортном средстве.

Функция турбины, настройка и ее дефекты

Функция турбокомпрессора заключается в том, чтобы увеличивать выходную мощность и крутящий момент двигателя. Благодаря турбине производители могут уменьшать количество рабочих цилиндров в двигателе без снижения мощности и крутящего момента.

Например, только трехцилиндровый 1,0 литровый турбомотор может выдавать мощность в 90 л.с. Добиться такой же производительности обычный бензиновый трехцилиндровый мотор без дорогостоящих модификаций не сможет ни один автопроизводитель.

Также 1,0 литровый турбированный трехцилиндровый двигатель имеет более низкий расход топлива и небольшой уровень выхлопных газов СО2.

Именно поэтому турбированные моторы стали очень распространенными в малолитражных бензиновых автомобилях за последние несколько лет.

Также все чаще стали выпускаться дизельные двигатели с двумя турбинами (Bi-Turbo), что позволяет производителям не только добиваться потрясающий мощности от дизельных автомобилей, но снижать уровень вредных веществ в выхлопе до рекордных значений.

В большинстве случаев работа современных турбокомпрессоров основана на тех же принципах, которые создал Швейцарский изобретатель Альфред Бучи. То есть большинство турбин в современных автомобилях работают от давления, образующего от выхлопных газах в камере сгорания двигателя.

Недавно также стали появляться турбины, которые могут работать, как от электричества, так и традиционно от газа, поступающего из выхлопной системы. Благодаря этому инженеры добились максимальной мощности и крутящего момента при небольших оборотах двигателя. Например, подобная турбо технология используется в дизельном 4,0 литровом моторе Audi V8 TDI, который устанавливается на кроссовер SQ7.

Устройство турбины дизельного двигателя

Турбокомпрессор выполняет задачу по нагнетанию воздуха под давлением в цилиндры мотора: чем больше будет воздуха, тем больше топлива силовой агрегат сможет сжечь, что, в свою очередь, приведет к увеличению мощности двигателя без увеличения объема имеющихся цилиндров.

Турбонаддув имеет особую конструкцию из двух элементов:

  • турбина;
  • компрессор.

Компрессор усиливает поступление воздуха в топливную систему. Составные части компрессора находятся в алюминиевом корпусе. Внутри находится ротор, закрепленный на оси турбины. Вращаясь, ротор вбирает воздух: большая скорость вращения приводит к большему количеству попавшего внутрь воздуха. Для набора скорости существует турбина.

Турбина состоит из корпуса с ротором внутри. Поскольку все элементы устройства взаимодействуют с газами высокой температуры, они изготавливаются из специальных материалов, невосприимчивых к такому воздействию.

Турбированный мотор: достоинства и недостатки

Популярность турбодвигателей вызвана их преимуществами перед обычными, заключающимися в:

  • увеличении мощности до 30% и уменьшении расхода топлива (турбомотор будет потреблять меньше горючего, нежели ДВС аналогичной мощности, но без турбины);
  • уменьшении загрязнения окружающей среды;
  • лучшем соотношении веса агрегата к развиваемой мощности;
  • более тихой работе механизма;
  • возможности оптимизировать другие параметры двигателя.

Однако есть и свои минусы:

  • требовательность к качеству масла и бензина, что в конечном итоге повышает расходы на эксплуатацию авто;
  • сложный ремонт, требующий применения специального оборудования, выполнить который своими силами маловероятно. Нередко турбина и вовсе оказывается непригодной к ремонту, а её полная замена заметно ударяет по кошельку автовладельца.

Виды турбин

Турбины бывают нескольких видов.

  • Традиционный. Наиболее простой тип турбокомпрессора. Его устройство и принцип действия описаны выше.
  • С изменяемой геометрией. В этой разновидности устройства регулировка объема поступающих на турбинное колесо отработавших газов осуществляется не за счет впускного клапана, а за счет изменения положения лопастей колеса. Таким образом, удается максимально точно согласовать нагнетание воздуха в цилиндры и количество оборотов. Чаще всего подобная конструкция используется на дизельных моторах. Однако ее применяют и на бензиновых (обычно на гоночных автомобилях).
  • Раздельный (также его называют twin-scroll). Отличительная особенность этой разновидности турбины заключается в том, что на крыльчатку отработавшие газы поступают сразу несколькими путями. Обычно для этого используется пара трубок (по 2 на каждую пару цилиндров). Одна из них предназначена для быстрого реагирования прибора, а вторая – для постоянного поддержания мощности двигателя на достаточном уровне.
  • Электрический. В отличие от всех остальных разновидностей турбокомпрессоров, электрический работает на за счет выхлопных газов, а от электродвигателя. Он, в свою очередь, запитывается от бортовой электросети транспортного средства. Подобная конструкция позволяет максимально эффективно регулировать нагнетание воздуха в цилиндры – ведь теперь оно не зависит от давления отработавших газов. Чаще всего сегодня электрокомпрессоры устанавливают на гибридные авто.
  • Гибридные. Отличается тем, что представляют собой смесь традиционного и электрического компрессора. Основную часть воздушного потока генерирует именно турбина. Однако если его недостаточно, начинает работать электрический нагнетатель и помогает турбокомпрессору. В результате удается добиться максимально стабильной работы приспособления.
  • Механический. Строго говоря, этот тип нагнетателя не является турбинным, хотя и выполняет ту же самую функцию. Он работает не за счет выхлопных газов, а за счет энергии двигателя. Она передается с карданного вала посредством приводного ремня. Главный недостаток устройств, созданных по этой схеме, заключается в том, что они отнимают часть полезной энергии у мотора и в целом менее эффективны, чем турбины.

VGT

VGT, Variable-geometry turbocharger, также VNT, Variable Nozzle Turbine — обеспечивает оптимизацию потока отработавших газов за счет изменения сечения входного канала. Необходимость такого изменения обусловлена тем, что оптимальное сечение при низких и при высоких оборотах существенно разное. При большом сечении турбокомпрессор плохо работает на низких оборотах, при маленьком — на высоких. Таким образом, изменение сечения позволяет турбине подстраиваться под нагрузку с максимальной эффективностью.

VGT чаще встречаются на дизельных двигателях, т.к. более надежны при относительно низких рабочих температурах, характерных для дизельных двигателей. Конструктивно VGT отличаются наличием кольца из специальных лопастей особой аэродинамической формы. В маломощных двигателях (легковые автомобили, гоночные автомобили и малотоннажные грузовики) сечение регулируется изменением ориентации этих лопастей. В двигателях высокой мощности лопасти не вращаются, а покрываются специальным кожухом либо перемещаются вдоль оси камеры (VGT со скользящими лопастями). Движение лопастей осуществляется с помощью мембранного вакуумного привода, серво-, гидро- либо пневмопривода.

  1. направляющие лопатки;
  2. кольцо;
  3. рычаг;
  4. тяга вакуумного привода;
  5. турбинное колесо.

Основные признаки неисправности турбины на дизеле

Своевременная диагностика и выявление неисправностей уберегут турбину и двигатель от дорогостоящего ремонта. Заподозрить, что турбокомпрессор сломался можно по изменениях в работе автомобиля.

Признаки неисправности турбины:

  • Масложер и недостаточное давление масла – бывает при пережиме маслопровода или его течи. Возникают такие неполадки и при неправильном подсоединении масляного шланга к самой турбине. В результате быстро изнашивается шейка вала, а также кольца и турбина гонит масло. Плохая смазка негативно влияет и на радиальные подшипники.
  • Черный дым из выхлопной – «симптом» появляется, когда в дизельный турбомотор поступает мало воздуха и горючая смесь сгорает внутри турбины. Часто дефект появляется из-за засорения клапана или загрязненности фильтрующих элементов, утечки в впускном/выпускном коллекторе.
  • Шумная работа двигателя на дизеле – громкий гул мотора, свист турбины под нагрузкой и другие признаки могут появиться при повреждении оси турбокомпрессора, роторов или трубопроводов, работающих под давлением. В такой ситуации нужна тщательная диагностика. При обнаружении потертостей и деформаций без снятия турбины не обойтись.
  • Сизый/синий дым – изменение цвета выхлопа происходит из-за поломок узлов дизеля или деталей турбины. Окрашивается дым в нетипичный цвет из-за попадания масла в выхлопную систему и ее сгорания там. Кроме того, появляется перерасход масла – вплоть до 1 л на тысячу км.
  • Слишком грязное масло – нарушен регламент замены смазочных материалов или фильтрующих элементов. Возможно, использовалось некачественное масло.
  • Белый дым – появляется, если забился маслопровод турбокомпрессора.

Вышедшая из строя турбина оказывает негативное влияние на работоспособность дизеля. На бензиновом двигателе фольксваген и других марок автомобилей также начинаются проблемы.

Белый дым на дизеле — один из признаков неисправности турбины

Часто турбина ломается по причине низкого масляного давления или использования некачественной смазки. В виду воздействия высоких температур, даже непродолжительное низкое давления масла приводит к износу подшипника оси турбокомпрессора, увеличению радиального люфта и в итоге к повреждению сальников. Разрушенные сальники не могут обеспечить должной герметичности и масло просачивается в коллектор турбомотора. Когда горячий выхлоп проходит через разбитые детали, он еще сильнее повышает температуру, выжигает остатки смазочных материалов. Подшипник полностью разрушается, ломаются лопасти. Функционирование в таком режиме очень быстро приводит к тому, что мотор остается без смазки. Итог работы силового устройства без масла понятен всем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector