Горение дизельного топлива: температура воспламенения, активатор и фазы горения

Катализатор горения дизельного топлива

В дизельных двигателях горючее часто впрыскивается в цилиндр двигателя в конце такта сжатия, всего за несколько градусов угла поворота коленчатого вала до верхней мертвой точки. Жидкое топливо обычно впрыскивается с высокой скоростью в виде одной или нескольких струй через небольшие отверстия или сопла в наконечнике инжектора, распыляется на мелкие капельки и проникает в камеру сгорания. Распыленное горючее поглощает тепло от окружающего нагретого сжатого воздуха, испаряется и смешивается с окружающим высокотемпературным воздухом высокого давления. Поскольку поршень продолжает двигаться ближе к верхней мертвой точке (ВМТ), температура смеси (в основном воздуха) достигает температуры воспламенения. Температура горения дизтоплива «Вебасто» ничем не отличается от аналогичной температуры других сортов дизеля, достигая около 500-600 градусов.

Быстрое воспламенение некоторого предварительно смешанного горючего и воздуха происходит после периода задержки зажигания. Такое быстрое воспламенение считается началом сгорания и характеризуется резким увеличением давления в цилиндре по мере расходования топливовоздушной смеси. Повышенное давление, возникающее в результате предварительно смешанного сгорания, сжимает и нагревает несгоревшую часть заряда и сокращает задержку перед его воспламенением. Это также увеличивает скорость испарения оставшегося горючего. Его распыление, испарение, смешивание с воздухом продолжаются до тех пор, пока все оно не сгорит. Температура горения керосина и дизтоплива в этом отношении может быть схожей.

Пределы взрываемости

Граничные концентрации паров горючего в воздухе называются верхним и нижним пределом воспламенения. Они являются главными характеристиками взрывоопасности топлива. Если концентрация превысит верхний предел, то бензин не взорвется, а сгорит. Иногда процесс сопровождается резкими скачками давления.

Значение между пределами называется промежутком взрываемости. У бензина он составляет 0,7-8%. Горение в емкости обязательно сопровождается взрывом, по причине большого давления и низкой температуры кипения. При этом химическая энергия переходит в тепловую. Процесс сопровождается обширным выделением газов.

Верхний и нижний предел зависят от следующих параметров:

  • состава реагентов;
  • повышения температуры из-за роста энергии активации;
  • добавления в топливо негорючих присадок.

Таблица содержит основные показатели пожароопасности бензина.

Температура вспышки -40С
Температура самовоспламенения 200-500С
Верхний предел -5С
Нижний предел -40С
Взрывоопасная концентрация паров в кислороде 1-6%

В двигателе автомобиля опасно детонационное горение. При нем теплота распространяется с большой скоростью. Процесс сопровождается износом деталей и нарушением газообмена.

Среди причин выделяют:

  • нарушение условий эксплуатации;
  • выбор низкого октанового числа;
  • неподходящая калильность свечи зажигания.

Предотвратить детонацию можно:

  1. Эксплуатацией мотора на высоких оборотах. При разгоне сокращается период сгорания бензина.
  2. Применением интеркулера для охлаждения наддувочного воздуха перед цилиндром.
  3. Правильным подбором свечей.
  4. Переходом на высокое октановое число.
  5. Торможением двигателем.

Транспортировку бензина регламентирует ГОСТ Р 52734. Цистерны поездов и автомобилей должны иметь специальное обозначение.

Перед заполнением емкость моют и сушат. Бензовоз должен быть оборудован заземляющим устройством. Водители проходят подготовку, организациям выдается особая лицензия.

Топлива. Высшая теплотворная способность — таблица. (Удельная теплота сгорания). Вариант для печати.

Приведенные в этой таблице величины соответствуют высшей теплотворной способности для сгорания при постянном давлении 1 bar и температуре 0oC.

  • Высшая теплотворная способность (Higher Calorific Value = Gross Calorific Value = GCV) – количество теплоты, выделяемой при полном сгорании топлива, охлаждении продуктов сгорания до температуры топлива и конденсации водяного пара, образовавшегося при окислении водорода, входящего в состав топлива.
  • Низшая теплотворная способность (Lower Calorific Value = Net Calorific Value = NCV) – количество теплоты, выделяемой при полном сгорании топлива без конденсации водяного пара.

Таблица ниже дает отличное представление о максимально возможном уровне той энергии, которую часто называют удельной теплотой сгорания для сухих (когда об этом имеет смысл говорить) топлив.

Энергия перешедшая при сгорании в водяной пар пойдет на парообразование и нагрев пара.

Интересной практической величиной является также «объемная » теплота сгорания. Ее можно прикинуть зная плотность. Для газов (в конце таблицы) и приведена «объемная» вышая теплотворная способность (для некоторых и та и другая).

Топлива. Высшая теплотворная способность — таблица. (Удельная теплота сгорания).
Топлива, массовая характеристика: Высшая теплотворная способность
кДж/кг ккал/кг БТЕ/фунт, Btu/lb
Ацетон,Acetone 29 000 6 900 12 500
Бензин, Gasoline, Petrol 47 300 11 250 20 400
Бутан, Butane C4H10 49 500 11 800 20 900
Водород, Hydrogen 141 800 33 800 61 000
Газойль, Gas oil 38 000 9 050 16 400
Глицерин, Glycerin 19 000 4 550 8 150
Гудрон, Битум, Tar 36 000 8 600 15 450
Дизтопливо, дизельное топливо, Diesel 44 800 10 700 19 300
Дерево сухое, Wood (dry) 14 400 — 17 400 3 450 — 4 150 6 200 — 7 500
Керосин, Kerosene 35,000 8,350 15 400
Кокс, Coke 28 000 — 31 000 6 650-7 400 12 000 — 13 500
Мазут, Heavy fuel oil 41 200 9 800 17 700
Метан, Methane 55 550 13 250 23 900
Порох, Gun powder 4 000 950 1 700
Пропан, Propane 50 350 12 000 21 650
Растительные масла, Oils vegetable 39 000 — 48,000 9 300 — 11 450 16 750 — 20 650
Скипидар, Turpentine 44 000 10 500 18 900
Спирт, Alcohol, 96% , Ethanol 30 000 7 150 12 900
Сырая нефть, Petroleum 43 000 10 250 18 500
Торф, Peat 13 800 — 20 500 3 300 — 4 900 5 500 — 8 800
Уголь-антрацит, Anthracite 32 500 — 34 000 7 750-8 100 14 000 — 14 500
Уголь битуминозный (жирный), Bituminous coal 17 000 — 23 250 4 050-5 500 7 300 — 10 000
Уголь древесный, Charcoal 29 600 7 050 12 800
Уголь каменный, Coal 15 000 — 27 000 3 550-6 450 8 000 — 14 000
Уголь бурый, лигнит, Lignite 16 300 3 900 7 000
Уголь -полуантрацит, Semi anthracite 26 700 — 32 500 6 350 — 7 750 11 500 — 14 000
Эфир, Ether 43 000 10 250 18 500
Газы, объемная характеристика: кДж/м3 ккал/м3 БТЕ/фут3, Btu/ft3
Ацетилен, Acetylene 56 000 13 350 728
Бутан, Butane C4H10 133 000 31 750 1 700
Водород, Hydrogen 13 000 3 100 170
Метан, Methane CH4 39 800 9 500 520
Природный газ, Natural gas 35 000- 43 000 8 350-10 250 455 — 560
Пропан, Propane C3H8 101 000 24 100 1 310

Температура вспышки дизельного топлива

Температура вспышки — это температура, при которой воспламеняемая жидкость дает достаточное количество пара в окружающий ее воздух, чтобы смесь воздуха с парами над поверхностью жидкости могла быть воспламенена от источника воспламенения. Из соображений безопасности (транспортировка, хранение) дизельное топливо должно иметь класс безопасности AIII, т.е. оно — должно иметь температуру вспышки выше 55°С. К примеру, содержание бензина в концентрации менее 3% в дизельном топливе может уменьшить температуру вспышки до такого уровня, что воспламенение возможно при комнатной температуре.

Плотность дизельного топлива кг м3

Одним из популярных видов топлива на отечественных АЗС является дизтопливо или солярка. Ее активно потребляет не только спецтехника, но и многие легковушки

Для таких машин очень важно, чтобы поступающая в бак жидкость была высокого качества. Это значит, что замеряемая плотность дизельного топлива в кг/м3 должна соответствовать установленным отраслевым и государственным стандартам

Физические характеристики дизеля

Дизельное топливо относится к продуктам, полученным после перегона нефти на специальных предприятиях (НПЗ). Качество и состав готовой жидкости должны удовлетворять строгим нормативам. Значение плотности является параметром, который участвует в определении продуктивной работоспособности топлива при различных условиях.

Специалисты знают, что данный параметр является не постоянным и зависит от внешних факторов, главным из которых является окружающая температура. Поднятие столбика термометра стимулирует уменьшение плотности, а обратный процесс повышает удельный вес дизельного топлива.

Для получения конкретного значения используется измерительный аппарат – ареометр. В процессе измерения агрегат нужно опустить в емкость с соляркой. Чтобы проводить замеры в разных жидкостях применяют различные типы ареометров. Измерения в нефтепродуктах осуществляются моделями АН, АНТ-1 или АНТ-2.

Ареометр изготовлен в виде стеклянной трубочки, внутри которой имеется градуированная вертикальная шкала. Степень бо́льшая погружения демонстрирует меньшую плотность и наоборот.

Увеличенный удельный вес жидкости является следствием того, что в ней присутствуют тяжелые углеводородные фракции. Качественная работа ДВС из-за этого может снизиться, ведь ухудшается испаряемость жидкости и не обеспечивается хорошая ее распыляемость форсунками. Дополнительный негатив от наличия большого числа тяжелых частиц в том, что на рабочих поверхностях образуется нагар и различные отложения.

Табличные значения

Основные измерения для дизтоплива проводятся при окружающей температуре +20С. Это обусловлено ГОСТом. Также следует учитывать марки горючего, ведь они имеют свои физические характеристики. Если необходимо значение вне зависимости от температуры, то можно его узнать из следующей таблицы.

Название марки Плотность, кг/м3 Температура замера, С
Летнее д/т 860 +20
Зимнее д/т 840 +20
Арктическое д/т 830 +20

Исходя из значений, очевидно, что плотность зимнего дизельного топлива явно меньше, чем параметр для летней марки топлива. Таким образом обеспечивается лучшая текучесть жидкости и снижается температура ее застывания.

По установленным стандартам летняя марка должна в нормальных условиях иметь удельный вес 8440 Н/м3. Аналогичный показатель для зимнего д/т определяется 8240 Н/м3.

Можно самостоятельно взвесить четко отмеренный литр горючего. Он должен дойти до отметки на весах в пределах 830-860 г, в зависимости от типа.

В Средней полосе данный тип на АЗС предлагается с апреля по начало-середину осени

Важно, чтобы окружающая температура не фиксировалась ниже -5С (при -6С возникает помутнение). Когда значение опускается ниже -7-8С, то существенно повышается риск замерзания жидкости. В результате возникают засоры в трубопроводах

В результате возникают засоры в трубопроводах.

Причины повышенного расхода топлива зимой

В зависимости от плотности дизтоплива не только определяется возможность замерзания или сгущения, но и возможность отдачи энергии. Повышенное значение дает возможность получить больше джоулей с каждого литра во время сгорания в цилиндрах. Это повлечет за собой общее поднятие КПД двигателя.

В результате автомобиль на каждые 100 км пути станет затрачивать существенно меньше топлива. На одном заправленном баке удастся проехать дальше.

Зимний и арктический тип топлива наделен меньшим количеством кг на кубометр. Это значит, что после сжигания выделяется меньше энергии от мотора, чем в сравнении с используемой летней маркой углеводородов.

Однако применение д/т с маркировкой «Л» для повышения производительности ДВС зимой недопустимо или нежелательно. В составе такой жидкости присутствует большой процент парафинов в растворенном состоянии. Снижение температуры сказывается на текучести, увеличивается вязкость, гелеобразность. Загрязняются и забиваются трубопроводы.

Дл каждого сезона нужно выбирать приемлемый тип топлива. Это позволит оптимально и эффективно эксплуатировать автомобиль в любых условиях.

Интересное по теме:

загрузка…

Химический состав — дизельное топливо

Изменение коэффициента избытка воздуха с ростом нагрузка.

Химический состав дизельного топлива устанавливается в лабораториях.

О химическом составе дизельных топлив и его влиянии на уровень цетанового числа ( воспламеняемость), низкотемпературные свойства, вязкость и вязкостнотемпературные свойства, нагарообразующие свойства и другие кратко рассказано в предыдущих разделах. Тем не менее, считаем необходимым тезисно повторить о влиянии химического состава, формирующегося в процессах первичной переработки нефти и в процессах вторичной переработки нефтяного сырья.

Свойства ИБР существенно зависят от химического состава дизельного топлива, прежде всего от соотношения в нем парафиновых и нафтеновых углеводородов, и от состава битума, являющегося дисперсной фазой растворов.

В соответствии с этим требования к химическому составу дизельных топлив прямо противоположны тем, которые предъявляются к карбюраторным топливам.

Температура помутнения, кристаллизации и застывания зависит от химического состава дизельного топлива. У парафиновых углеводородов эти температуры обычно высокие, часто положительные. По этой причине нефти парафинового основания используют для получения летних сортов дизельного топлива. Многие нафтеновые углеводороды имеют низкую температуру застывания ( ниже — 50 С), из содержащих их нефтей получают зимние сорта топлива. Ароматические углеводороды имеют высокую температуру застывания, а кроме того, вызывают повышенное нагарообразование, поэтому их наличие в дизельном топливе нежелательно.

Величина запаздывания самовоспламенения и температура самовоспламенения зависят прежде всего от химического состава дизельного топлива, имеют значение при запуске холодного двигателя и оказывают большое влияние на протекание сгорания.

Период задержки самовоспламенения и температура самовоспламенения зависят прежде всего от химического состава дизельного топлива, они имеют значение при запуске холодного двигателя и оказывают большое влияние на протекание сгорания.

Результаты опытов, приведенные в табл. 69, показали хорошее совпадение параметров горения с физико-химическими свойствами и прежде всего химическим составом дизельных топлив.

Результаты опытов, приведенные в табл. 67, показали хорошее совпадение параметров горения с физико-химическими свойствами и прежде всего с химическим составом дизельных топлив.

Одно из новых требований к дизельному топливу — максимально низкая токсичность продуктов его сгорания, определяемая содержанием оксидов серы и сажи, которое должно быть снижено в 3 — 4 и 2 — 3 раза соответственно. Анализ химического состава дизельных топлив показывает, что для удовлетворения этих требований необходимо уменьшить в них содержание серы в 3 — 4 раза и ароматических углеводородов, особенно полициклических, в 2 — 3 раза.

Влияние концентрации.

В карбюраторном двигателе повышение степени сжатия и температуры камеры сгорания усиливает стуки. В двигателе с воспламенением от сжатия повышение давления и температуры цикла снижает стуки. Поэтому требования к химическому составу дизельных топлив прямо противоположны требованиям к топливам для карбюраторных двигателей.

Жесткая работа двигателя дизеля, как известно, связана с длительностью периода задержки воспламенения горючей смеси. Как температура самовоспламенения, так и период индукции являются функциями химического состава дизельного топлива.

Впрыскиваемое в цилиндр топливо воспламеняется не сразу. Время, протекающее с момента впрыска топлива в камеру сгорания до его воспламенения, называется периодом задержки воспламенения и исчисляется в сотых долях секунды. Продолжительность периода задержки воспламенения зависит в основном от химического состава дизельного топлива.

Рабочая температура дизельного двигателя

Дизельные агрегаты имеют другую конструкцию, поэтому температура в камере сгорания при их работе в несколько раз ниже. Температура работы зависит от того, какого типа сам двигатель. При работе температура сначала значительно повышается, потом снижается, так как горючая смесь начинает воспламеняться быстрее. Она сгорает раньше, процесс становится более плавным и полноценным, почти не остается невоспламенившейся жидкости. За счет этого рабочая температура становится стабильной, больше делается КПД двигателя, сами выхлопы становятся менее токсичными.

Специалисты считают, что для дизельных конструкций нормальной температурой можно считать 70-90 градусов в зависимости от модели самого мотора. Под нагрузкой температура работы мотора может подниматься до 97 градусов, но дальнейшее ее повышение может вызвать серьезный вред для системы. Существует и обратная перегреву проблема, когда агрегат не прогревается до нужной температуры. Как и у бензинового варианта, у него начинают возникать разнообразные проблемы.

Например, при прогреве, когда система работает на холостом ходу, нужно дать ей нагреться хотя бы до 40-50°С, прежде чем начать движение. Это позволит ей работать оптимально, снизить износ деталей. Кроме этого, требуется следить за оборотами: они должны достичь 2 000 или 2500 оборотов в минуту. После этого нужно подождать, пока система прогреется до 80°С, это будет значить, что силовой агрегат можно использовать в полную силу. Особенно эта рекомендация актуальна для холодного времени года, так как многие дизели испытывают зимой проблему с запуском, применяют специальный электроподогрев.

Если мотор не достигает рабочей температуры, его КПД сильно снижается. Это отражается на тяге автомобиля в целом, он начинает хуже разгоняться, медленно едет, расход топлива при этом значительно повышается. Это может происходить по следующим причинам:

  • Термостат вышел из строя;
  • Резко ухудшилась компрессия;

Если использовать такой автомобиль под нагрузкой, например, при езде по бездорожью или перевозке грузов, смесь будет сгорать не полностью, начнет появляться нагар на стенках камеры сгорания, топливные форсунки засорятся, сажевый фильтр быстро выйдет из строя, износ системы увеличится.

Например, при засорении форсунок солярка не будет сгорать полностью, ее расход увеличится чисто из-за того, что часть топлива будет выливаться через выхлопную трубу, так и не сгорев. Опасно данное явление тем, что догорает топливо, уже находясь на поверхности поршней, что вызывает их прогорание, засорение камер сгорания. Пострадать от этого может и впускной клапан, уменьшится компрессия, кроме этого, запустить такой двигатель на холодную будет проблематично.

Пары дизельного топлива

Плотность паров дизельного топлива меньше, чем у бензина. Они также менее летучие, поэтому процессы испарения, образования горючих смесей с воздухом, сгорания, а также образования взрывоопасных смесей для двух видов топлива различны.

Дизельное топливо неоднородно, состоит из нафтеновых, парафиновых и ароматических углеводородов, их производных и других химических соединений. Эта неоднородность отражается как на составе паров, так и на свойствах самого дизельного топлива.

В перечне характеристик топлива есть понятия, относящиеся к его парам.

Температура вспышки паров дизельного топлива

Её значение характеризует сам момент вспышки, затем пламя быстро гаснет, поскольку при этой температуре скорость образования горючей смеси ещё мала для горения. Воспламенение наступает позже, когда температура нефтепродукта и его паров возрастут.

Понятие температуры вспышки паров активно используется в производстве и исследовании качества топлива:

  • для установления норм безопасного обращения с горючим;
  • для определения его чистоты;
  • для выявления фальсификатов и опасных добавок;
  • для правильных расчётов работы энергоустановок.

Температура вспышки паров дизельного топлива в открытом тигле — от 52 до 96 ºС. Для бензина её значение составляет -43 ºС. Однако при сравнении температур самовоспламенения наблюдается обратная картина: для дизельного топлива это 210, для бензина — 246 ºС. Вещества, имеющие температуру вспышки паров ниже 61 ºС, относятся к легковоспламеняющимся, поэтому и бензин, и ДТ — в их числе.

Температуру вспышки всегда учитывают:

  • при перевозке и хранении топлива в жаркую пору года;
  • при размещении мощного работающего двигателя в закрытом помещении;
  • при производстве ДТ.

ГОСТ 305-82 устанавливает температуру вспышки паров для ДТ общего назначения не выше 40, для двигателей тепловозов и морских судов — не выше 62 ºС.

Давление насыщенного пара

Давление насыщенных паров дизельного топлива — это равновесное количество пара вещества над жидкостью при установленных объёмах двух фаз и заданной температуре. Измеряется в Па или мм. рт. ст. на специальном устройстве.

Поскольку ДТ состоит из различного набора химических соединений, давление насыщенного пара зависит не только от марки продукта, но и от сорта нефти. Для дизельного топлива его значения составляют от 800 до 1333 Па или от 6 до 10 мм.рт. ст., для бензина — от 48 000 до 93 000Па или от 370 до 720 мм. рт. ст.

От плотности насыщенных паров топлива и состава фракций зависит, в свою очередь, испаряемость материала, то есть способность перехода из жидкого в газообразное состояние, определяющая качество запуска и работы двигателя.

Давление насыщенных паров ДТ тем выше, чем ниже температура кипения фракции. Чем легче фракции, тем проще запуск двигателя.

Класс опасности паров дизельного топлива

По ГОСТ 12.1.044 дизельное топливо — это легковоспламеняющаяся жидкость. В соответствии с ГОСТ 12.1.007 по степени воздействия на организм человека его относят к 4 классу опасности (малоопасная жидкость).

Предельная концентрация паров ДТ в рабочей зоне — 300 мг/м³. Взрывоопасной считается также концентрация его паров в смеси с воздухом в диапазоне от 2 до 12 %. При наличии взрывоопасной концентрации нижним и верхним температурными пределами взрываемости насыщенных паров считаются 70 и 120 ºС соответственно.

«Питер — АТ»
ИНН 780703320484
ОГРНИП 313784720500453

Влияние степени сжатия

При изменении степени сжатия Е изменяется качество подготовленности рабочей смеси к сгоранию. Степень сжатия может быть нарушена неправильно подобранной толщиной прокладки, устанавливаемой между головкой цилиндров и блоком, при срезании плоскости головки цилиндра или поршня, изменении длины шатуна или радиуса кривошипа в процессе ремонта.

Увеличение степени сжатия по сравнению с оптимальным значением сопровождается повышением жесткости работы двигателя и максимального давления сгорания.

Снижение величины Е замедляет процесс сгорания и ухудшает экономичность работы.

Кипение — бензин

Кипение бензина начинается при сравнительно низкой температуре и протекает очень интенсивно.

Конец кипения бензина не указан.

Начало кипения бензина — ниже 40 С, конец — 180 С, температура начала кристаллизации не выше — 60 С. Кислотность бензина не превышает 1 мг / 100 мл.

Температура конца кипения бензина по ГОСТ составляет 185 С, а фактическая — 180 С.

Температура конца кипения бензина — это температура, при которой стандартная ( 100 мл) порция испытуемого бензина полностью перегоняется ( выкипает) из стеклянной колбы, в которой она находилась, в приемник-холодильник.

Схема стабилизационной установки.

Конечная точка кипения бензина не должна превышать 200 — 225 С. Для авиационных бензинов конечная температура кипения лежит значительно ниже, доходя в некоторых случаях до 120 С.

МПа температура кипения бензина равна 338 К, его средняя молярная масса 120 кг / кмоль, а теплота парообразования г ь 252 кДж / кг.

Температура начала кипения бензина, например 40 для авиабензинов говорит о наличии легких, низкокипящих фракций, но не указывает их содержания. Температура выкипания первой 10 % — ной фракции, или пусковой, характеризует пусковые свойства бензина, его испаряемость, а также склонность к образованию газовых пробок в системе подачи бензина. Чем ниже температура выкипания 10 % — ной фракции, тем легче запустить двигатель, но и тем больше возможность образования газовых пробок, которые могут вызвать перебои в подаче топлива и даже остановку двигателя. Слишком высокая температура выкипания пусковой фракции затрудняет запуск двигателя при низких температурах окружающей среды, что приводит к потерям бензина.

Влияние температуры конца кипения бензина на его расход при эксплуатации автомобиля.| Влияние температуры перегонки 90 % бензина на октановое число-бензинов различного происхождения.

Снижение конца кипения бензинов риформинга ведет к ухудшению их детонационной стойкости. Для решения этого вопроса необходимы исследовательские работы и экономические расчеты. Следует отметить, что в зарубежной практике целого ряда стран в настоящее время вырабатываются и применяются автомобильные бензины с температурой конца кипения 215 — 220 С.

Влияние температуры конца кипения бензина на его расход при эксплуатации автомобиля.| Влияние температуры перегонки 90 % бензина на октановое число бензинов различного происхождения.

Снижение конца кипения бензинов риформинга ведет к ухудшению их детонационной стойкости. Для решения этого вопроса необходимы исследовательские работы и экономические расчеты. Следует отметить, что в зарубежной практике целого ряда стран в настоящее время вырабатываются и применяются автомобильные бензины с температурой конца кипения 215 — 220 С.

Если температура конца кипения бензина высока, то содержащиеся в нем тяжелые фракции могут не испариться, а, следовательно, и не сгореть в двигателе, что приведет к повышенному расходу топлива.

Понижение температуры конца кипения бензинов прямой перегонки ведет к повышению их детонационной стойкости. С низкооктановых бензинов прямой перегонки имеют октановые числа соответственно 75 и 68 и применяются в качестве компонентов автомобильных бензинов.

Четырехтактный процесс в дизеле

В четырехтактном дизеле (рис. 2 «Рабочий цикл четырехтактного дизеля«) клапа­ны механизма газораспределения управ­ляют впуском воздуха и выпуском ОГ. Они открывают или закрывают впуск­ные и выпускные каналы головки цилин­дров. Каждый впускной и выпускной ка­нал может иметь один, два или три кла­пана.

Рис. 2 : а — впуск; b — сжатие; с — рабочий ход; d — выпуск.  1. Впускной распределительный вал. 2. Форсунка. 3. Впускной клапан. 4. Выпускной клапан. 5. Выемка в днище поршня. 6. Поршень. 7. Стенка цилиндра. 8. Шатун. 9. Коленчатый вал. 10. Выпускной распределительный вал. а — угол поворота коленчатого вала. d — диаметр цилиндра. М — крутящий момент. s — ход поршня. Vc — объем камеры сгорания. Vh — рабочий объем. ВМТ — верхняя мертвая точка поршня. НМТ — нижняя мертвая точна поршня.

Первый такт — впуск (а)

Поршень 6, находящийся в верхней мер­твой точке (ВМТ), движется вниз и уве­личивает объем цилиндра. Дроссельная заслонка отсутствует, и воздух через от­крытый впускной клапан 3 поступает не­посредственно в цилиндр. В нижней мертвой точке (НМТ) поршня объем ци­линдра достигает своего максимального значения (Vh + Vc).

Второй такт — сжатие (Ь)

Клапаны механизма газораспределения закрыты. Движущийся поршень сжима­ет заключенный в цилиндре воздух, ко­торый, сообразно степени сжатия (от 6 у больших двигателей до 24 у двигателей легковых автомобилей), нагревается до высокой температуры, максимально до­ходящей до 900°С. В конце процесса сжа­тия форсунка впрыскивает топливо в ра­зогретый воздух под высоким давлением (в настоящее время приблизительно до 2000 бар).

В ВМТ поршня объем цилиндра до­стигает минимального значения (объем камеры сгорания Vc )

Третий такт — рабочий ход (с)

После задержки воспламенения (не­сколько градусов угла поворота коленча­того вала) начинается рабочий ход. Тон­ко распыленное дизельное топливо вос­пламеняется в сильно сжатом горячем воздухе в камере сгорания и сгорает, вследствие этого заряд топливовоздуш­ной смеси в цилиндре продолжает разо­греваться дальше и давление в цилиндре поднимается еще выше. Освобожденная при сгорании энергия определяется ко­личеством впрыснутого топлива (каче­ственное регулирование). Под действием давления поршень движется вниз, при этом тепловая энергия преобразуется в кинетическую. Кривошипно-шатунный механизм преобразует кинетическую энергию поршня в энергию вращения коленчатого вала.

Четвертый такт — выпуск (d)

Рис. 4

Уже незадолго до нижней мертвой точки поршня открыва­ется выпускной клапан 4. Находящиеся под давлением горячие газы начинают выходить из цилиндра. Движущийся вверх поршень вытесняет остальные ОГ. После двух оборотов коленчатого вала новый рабочий цикл начинается с такта впуска.

Кулачки впуска и выпуска распреде­лительного вала служат для открытия и закрытия клапанов. У двигателей с од­ним распределительным валом движе­ние от кулачков чаще всего передается на клапаны с помощью коромысел. Фа­зы газораспределения включают н себя моменты открытия и закрытия клапа­нов по отношению к положению колен­чатого вала (рис. 4 «Диаграмма фаз распределения четырехтактного дизеля«), поэтому они указы­ваются в градусах угла поворота колен­чатого вала. Распределительный вал приводится от коленчатого вала зубчатым ремнем, цепью или набором шестерен. При четы­рехтактном процессе рабочий цикл со­вершается за два оборота коленчатого ва­ла, поэтому распределительный вал вра­щается с вдвое меньшей частотой, чем коленчатый. Передаточное отношение между коленчатым и распределительным валами составляет, таким образом, 2:1.

При переходе от такта выпуска к так­ту впуска все клапаны некоторое время открыты одновременно — этот момент называется перекрытием клапанов. При этом оставшиеся в камере сгорания отработавшие газы вытесняются свежим зарядом воздуха в выпускной коллектор, одновременно охлаждая цилиндр.

Температура воспламенения солярки

Когда рассматривается температура воспламенения солярки, то преимущественно указывается самовоспламенение. Для летнего горючего она равна 310С, тогда как для зимнего 240С. Причина у данной разницы заключается в условиях эксплуатации и хранения. К тому же данные показатели сильно зависят от давления, потому что процесс возгорания ДТ в двигателе происходит именно при давлении, но без дополнительного источника искры (в бензиновых аналогах задействуются свечи).

Одним из важных нюансов стоит учитывать задержку воспламенения, т.к. именно она оказывает решающее влияние на ЦЧ. К тому же минимальная задержка позволяет существенно снизить выбросы вредных веществ в атмосферу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector