Системы впрыска топлива в двигатель

Содержание:

Есть ли отличия между топливными форсунками для дизельных и бензиновых двигателей

Форсунки для дизельных моторов обладают меньшим сечением, а принцип их работы гораздо сложнее. Для определения поломки нужны особые знания. Такие двигатели требуют повышенной герметичности топливной системы.

Для подобных силовых установок используют электромагнитные и пьезоэлектрические модели.

В моторах, работающих на бензине, присутствуют одно- и многоточечные инжекторы. Первые регулируют подачу топлива и устанавливаются перед заслонкой, а вторые включают нескольких форсунок, закрепленных перед трубопроводами. Устройство подает бензин в камеру сгорания, но обладает неразборной конструкцией, поэтому не подлежит ремонту. Стоимость комплектующих для бензиновых двигателей намного ниже, чем для дизельных.

Чем отличается инжектор от карбюратора

Принцип, по которому карбюратор подает смесь бензина с кислородом в камеры сгорания двигателя, – разница в давлении. Принудительного впрыска здесь нет, и топливоподача происходит с помощью всасывания топлива. Значит, часть мощности силового агрегата тратится на этот процесс.

Количество воздуха в топливной смеси автоматически не регулируется. Карбюратор настраивается механическим путем еще до поездки, и эта настройка универсальная. Но в этом есть некоторые недостатки. Двигатель в определенные моменты способен получать от карбюратора больше топлива, чем он может переработать. В итоге часть бензина не сгорает, а выходит вместе с выхлопными газами, что наносит вред окружающей среде и не экономит топливо.

В случае же с инжектором происходит принудительная подача топлива в камеры сгорания при помощи форсунок, а количество бензина регулируется электроникой, которая и отвечает за приготовление топливовоздушной смеси.

Выхлоп инжекторного автомобиля менее токсичен, не так вреден для окружающей среды, как карбюраторный, потому что в нем меньше несгоревшего бензина.

В этом и заключаются отличия системы питания карбюраторного двигателя от инжекторного. Теперь перейдем к вопросу «что лучше» не для экологии, а для водителя и автомобиля.

Ещё кое-что полезное для Вас:

  • Что такое объем двигателя автомобиля?
  • Устройство, виды и назначение фильтра тонкой очистки топлива
  • Датчик коленвала: признаки неисправности

 Плюсы двигателя с инжекторной топливоподачей

  1. Если допустить, что остальные устройства в двух автомобилях идентичны и различны только способы подачи топлива, то большая мощность остается у инжекторного мотора. Разница в лошадиных силах между карбюраторным и инжекторным ДВС может составлять 10%. Эти отличия достигаются за счет другого впускного коллектора, точно выставляемого в каждый момент угла опережения зажигания, и другого способа подачи топлива.
  2. Инжекторные моторы, по сравнению с карбюраторными аналогами, отличаются топливной экономичностью за счет точной дозированной подачи бензина. При таком способе 100% бензина сгорает в камерах двигателя, превращая тепловую энергию в механическую.
  3. Основная причина перехода всех мировых автопроизводителей на инжекторную систему –  экологичность. Карбюраторные выхлопы более токсичны.
  4. В морозную погоду инжекторный двигатель не нуждается в дополнительном прогреве перед запуском.
  5. Инжекторы намного надежнее карбюраторов, их выход из строя встречается реже, по сравнению с неисправностями карбюраторов.
  6. Инжекторные двигатели не имеют катушку-трамблер. Эта деталь часто выходит из строя на машинах с карбюраторной топливоподачей.

Минусы инжекторов

  1. Хоть инжектор надежен, но он выходит из строя. А для его диагностики и последующего ремонта необходимо специализированное оборудование.  Ремонт в условиях «гаража» невозможен, для этого нужен опыт и квалификация. Ремонт этого устройства на СТО, как и обслуживание с профилактикой – работа дорогостоящая.
  2. Инжектор требует только качественного топлива. Если топливо содержит некоторое количество механических примесей, то нормальная его работа затруднена. Он быстро засорится и выйдет из строя. А чистка и ремонт стоят недешево.
  3. Следующий недостаток касается двигателей, на которые вместо карбюратора установили инжектор. В результате доработки повысится количество сгораемого в двигателе топлива, что повышает его рабочую температуру. Это чревато возможным перегревом ДВС со всеми вытекающими последствиями.

Плюсы карбюраторных систем

  1. В плане обслуживания карбюраторы считаются простыми устройствами. Для их ремонта не нужно специализированное оборудование и инструмент. Все необходимое для этого найдёте в гараже.
  2. Стоимость деталей – невысока. В случае невозможности ремонта можно купить новый карбюратор. По сравнению с инжектором его стоимость низкая.
  3. Карбюратор не требует высокого качества топлива. Он нормально работает на бензине с низким октановым числом. Небольшое количество механических примесей несильно затруднит его работу. Максимум – забьются жиклеры.

Минусы карбюраторов

Недостатков у карбюраторных систем намного больше, чем достоинств, и поэтому существует тенденция на их замещение инжекторами.

  1. Автомобиль, двигатель которого оснащен карбюратором, потребляет больше бензина, чем инжекторный аналог. Причем излишнее потребление топлива не переходит в дополнительную мощность. Топливо не догорает и выбрасывается в атмосферу;
  2. Карбюратор не любит перепадов температур. Он чувствителен и к повышенной, и к пониженной температуре окружающей среды. Зимой его детали примерзают друг к другу. Это происходит из-за образования внутри него конденсата;
  3. Низкая экологичность.

Возможность установки системы на автомобиль

Автомобилистов интересует вопрос относительно возможности установки системы впрыска воды с метаном в двигатель своими руками. Возможность такая есть.

Существует множество самодельных схем по реализации водяной системы впрыска, где в ход идут такие приспособления как медицинские шприцы, капельницы и прочие фактически подручные средства. Их монтируют во впускной коллектор, располагая за заслонкой дросселя. Но самое интересное здесь то, что системы оказываются вполне рабочими и достаточно эффективными.

https://youtube.com/watch?v=pMxei0kmL_U

В итоге автовладелец получает некоторый прирост мощности и увеличение крутящего момента. Но за всеми этими преимуществами не стоит забывать о существовании одного весомого недостатка. Заключается он в том, что самодельные системы попросту заставляют заливать воду в больших объёмах внутрь коллектора. Жидкость при этом не распыляется. В итоге взвесь происходит неравномерное распределение по цилиндрам. То есть в одних цилиндрах будет смесь обеднённая, в других нормальная. А это прямой путь к неравномерной работе всего двигателя. Если количество воды превысит критические отметки, гидроудара будет практически не избежать.

Если вы готовы потратить на модернизацию больше денег, тогда есть смысл обратиться в специализированные тюнинг-ателье. Здесь продаются комплекты, куда входят:

  • бачок для смеси воды со спиртом;
  • насос высокого давления (выдаёт от 5 до 10 бар);
  • электронный блок управления, отвечающий за работу насоса;
  • форсунки для впрыска жидкости.

Наиболее дорогостоящие системы предусматривают использование регулирующего клапана. Он контролирует давление и следит за объёмами воды, которые поступают в мотор.

Такая система работает по достаточно простому принципу. Блок управления подключается к автомобильному датчику, который отвечает на расход воздуха силового агрегата. Блок считывает и анализирует полученные параметры, определяет оптимальное количество воды и подаёт её путём передачи соответствующей команды исполнительному устройству. В данном случае это насос высокого давления.

Хотя система кажется предельно простой, не стоит забывать о некоторых возникающих сложностях. Водяной впрыск будет осуществляться только в условиях определённого режима работы силовой установкой. Зачастую такие системы функционируют, когда обороты двигателя преодолевают отметку в 3000 оборотов в минуту. Также дополнительное оборудование практически не будет контролировать подачу смеси воды со спиртом. Она только даёт команды, чтобы насос высокого давления включался или выключался. Единственным ограничителем количества поступающей воды становится только форсунка. Потому к её выбору следует подходить предельно внимательно.

Есть ещё один немаловажный момент. Пока управляющий блок передаёт команду насосу за включение, пока насос запустится и начнёт перекачивать жидкость, наблюдается определённая задержка по времени между отправкой сигнала на впрыск и непосредственно самим впрыском. От этого страдает вся система, поскольку снижается эффективность её работы на двигателе.

В итоге мнения относительно форсировки путём использования водяной смеси с метаном расходятся. Но можно сказать, что в настоящее время это достаточно дорогостоящее удовольствие, которое выглядит необычно и многих автомобилистов попросту пугает даже одним своим названием. Люди не могут понять, как это вода может повышать мощность.

Как вы поняли из всего рассмотренного ранее, система действительно работает и приносит определённые плоды. Но предела совершенству нет. Пока подобное форсирование воспринимают как некую экзотику, имеющую множество подводных камней и вопросов, остающихся без ответа.

Удастся ли как-то повысить эффективность, сделать систему доступнее и массово внедрить её в автопроизводство, говорить сложно. При нынешних альтернативных способах форсировки и повышения отдачи двигателей водяной впрыск не выглядит самым предпочтительным. Но ситуация может меняться с течением времени.

Нельзя исключать, что через несколько лет кто-то снова вспомнит про водяной впрыск, придумает новый способ применения системы и реализует её на своих автомобилях. И тогда все скажут, что вода действительно работает, и все захотят себе установить подобное решение. Но пока ситуация складывается не в пользу водяного впрыска.

Устройство и принцип работы (на примере электронной системы распределенного впрыска)

Устройство системы впрыска

В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.

Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.

Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.

Датчик положения коленвала служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ – полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный “жизненно важный” в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).

Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.

Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.

Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др. (все опять же зависит от конкретной модели)

Из всего перечесленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.

Устройство и принцип действия системы GDI

В наши дни системы, аналогичные Gasoline Direct Injection, используют и другие производители автомобилей, обозначая данную технологию TFSI (Audi),  FSI или TSI (Volkswagen), JIS (Toyota), CGI  (Mercedes), HPI (BMW). Принципиальными отличиями этих систем являются рабочее давление, конструкция и расположение топливных форсунок.

Конструктивные особенности двигателей GDI

Система питания воздухом двигателя GDI

Классическая система непосредственного впрыска топлива конструктивно состоит из следующих элементов:

  • Топливный насос высокого давления (ТНВД). Для корректной работы системы (создания тонкого распыливания) бензин в камеру сгорания должен подаваться под высоким давлением (аналогично дизельным моторам) в пределах 5…12 МПа.
  • Электрический топливный насос низкого давления. Подает топливо из бензобака к ТНВД под давлением 0,3…0,5 МПа.
  • Датчик низкого давления. Фиксирует уровень давления, созданного электрическим насосом.
  • Форсунки высокого давления. Осуществляют впрыск топлива в цилиндр. Оснащены вихревыми распылителями, позволяющими создавать требуемую форму топливного факела.
  • Поршень. Имеет особую форму с выемкой, которая предназначена для перенаправления горючей смеси к свече зажигания двигателя.
  • Впускные каналы. Имеют вертикальную конструкцию, благодаря чему возникает обратный вихрь (закручен в противоположную сторону по сравнению с другими типами двигателей), выполняющий функцию направления смеси к свече зажигания и обеспечивающий лучшее наполнение камеры сгорания воздухом.
  • Датчик высокого давления. Располагается в топливной рампе и предназначен для передачи информации в электронный блок управления, который изменяет уровень давления в зависимости от актуальных режимов работы двигателя.

Режимы работы системы прямого впрыска

Схема работы непосредственного впрыска топлива

Как правило, двигатели с непосредственным впрыском имеют три основных режима работы:

  • Впрыск в цилиндр на такте сжатия (послойное смесеобразование). Принцип работы в этом режиме заключается в образовании сверхбедной смеси, что позволяет максимально экономить топливо. В начале в камеру цилиндра подается воздух, который закручивается и сжимается. Далее под высоким давлением осуществляется впрыскивание топлива и перенаправление полученной смеси к свече зажигания. Факел получается компактным, поскольку формируется на этапе максимального сжатия. При этом топливо как бы окутано прослойкой воздуха, что уменьшает тепловые потери и предотвращает предварительный износ цилиндров. Режим используется при работе мотора на малых оборотах.
  • Впрыск на такте впуска (гомогенное смесеобразование). Состав топлива в этом режиме близок к стехиометрическому. Подача воздуха и бензина в цилиндр происходит одновременно. Факел смеси при таком впрыске имеет коническую форму. Применяется при мощных нагрузках (скоростной езде).
  • Двухстадийный впрыск на такте сжатия и впуска. Применяется при резком ускорении машины, движущейся на малой скорости. Двойной впрыск в цилиндр позволяет снизить вероятность детонации, которая может возникнуть в моторе при резкой подаче обогащенной смеси. Вначале (на такте впуска воздуха) подается небольшое количество бензина, что приводит к образованию обедненной смеси и снижению температуры в камере сгорания цилиндра. На такте максимального сжатия подается оставшаяся часть топлива, что делает смесь богатой.

Управление процессом впрыска

Чтобы подача горючего осуществлялась своевременно и в нужных для создания оптимальной смеси количествах, требуется специальное управление системой впрыска топлива. В современных автомобилях за это отвечает электронный блок управления (ЭБУ). 

Чтобы передать команду на форсунку для впрыска топлива, ЭБУ должен получить нужный сигнал от двигателя. Он передается при помощи соответствующих датчиков. В различных автомобилях для контроля работы двигателя используется до десятка датчиков, среди которых используется три основных, через которые и контролируется электронный впрыск топлива:

1. Датчик фазы и метка

Датчик фазы или датчик положения газораспределительного вала. Его срабатывание является сигналом для начала процесса впрыска топлива. На шестерне или самом распределительном вале устанавливается задающая метка. Рядом с ней — датчик фазы. Когда метка приближается к датчику, импульс передается в блок управления, сигнализируя о начале такта впуска. ЭБУ подают команду, и форсунка впрыска топлива открывается, подавая его в камеру сгорания.

2. Датчик температуры жидкости в системе охлаждения

Он устанавливается в рубашке охлаждения и передает на ЭБУ информацию о температуре двигателя. Если двигатель холодный и не набрал рабочую температуру, то смесь делается богаче за счет того, что топливо впрыскивается дольше и смесь обогащается. Например, бензин впрыскивается не 8, а 10 миллисекунд.

3. Датчик кислорода

 Устанавливается в выпускном трубопроводе системы выхлопа. Он подает сигнал в том случае, если количество топлива превышает то, которое необходимо для полного сгорания при максимальной концентрации кислорода. Это заставляет блок управления снижать подачу бензина или солярки, регулируя его расход.

Такая система позволяет оперативно собрать информацию от датчиков, проанализировать его в ЭБУ, после чего подать оптимальную управляющую команду на форсунку. В результате в каждом из режимов работы обеспечивается оптимальная мощность при минимальных затратах топлива и токсичности выхлопа. Такт впуска топлива – это очень быстрый процесс, проходящий за сотые доли секунды. 

Управление работой дизельного двигателя

Конструктивные требования к работе дизельного двигателя

Вырабатываемая дизельным двигателем мощ­ность Р определяется крутящим моментом на коленчатом вале, передаваемым сцеплению, и частотой вращения коленчатого вала. Кру­тящий момент на коленчатом вале равняется крутящему моменту, создаваемому в процессе сгорания топлива, за вычетом механических потерь на трение, газообмен и привод вспомо­гательных агрегатов. Крутящий момент созда­ется в процессе силового цикла, и при наличии достаточного количества воздуха определятся следующими переменными: массой пода­ваемого топлива, моментом начала сгорания топлива, определяемым началом впрыска, и процессами впрыска и сгорания топлива.

Кроме того, максимальный, зависящий от частоты вращения коленчатого вала кру­тящий момент ограничен требованиями к ограничению дымности выхлопа, давлением в цилиндрах, тепловой нагрузкой различных компонентов и величиной механической на­грузки всей кинематической цепи привода.

Основная функция системы управления дизельным двигателем

Основной функцией системы управления дви­гателем является регулирование создаваемого двигателем крутящего момента или, при некото­рых условиях, регулирование частоты вращения коленчатого вала в пределах допустимого диа­пазона (например, оборотов холостого хода).

В дизельном двигателе очистка отработав­ших газов и подавление шума осуществляются в значительной степени внутри самого двига­теля, т.е. путем управления процессом сгорания топлива. Это, в свою очередь, осуществляется системой управления двигателем посредством управления следующими переменными:

  • Заряд смеси в цилиндре;
  • Объем заряда смеси, подаваемого во время такта впуска;
  • Состав заряда смеси (рециркуляция отра­ботавших газов);
  • Движение заряда (завихрения на впуске);
  • Момент начала впрыска;
  • Давление впрыска;
  • Распределение впрыска топлива (напри­мер, предварительный впрыск, разделен­ный впрыск топлива и т.д.).

До начала 1980-х годов управление впры­ском топлива и зажиганием осуществлялось исключительно при помощи механических устройств. Например, в топливном насосе вы­сокого давления количество подаваемого то­плива регулируется в зависимости от нагрузки двигателя и частоты вращения коленчатого вала путем поворота плунжера насоса, имею­щего спиральную канавку. В случае механиче­ского регулирования начало впрыска/подачи топлива регулируется при помощи центробеж­ного регулятора (зависимого от скорости вра­щения). Также применялись гидравлические системы регулирования, в которых количество топлива менялось посредством регулирова­ния давления в зависимости от нагрузки и частоты вращения коленчатого вала.

Точность регулирования

В настоящее время, в связи со строгими требованиями законодательства в отношении ограничения токсичности выбросов, требуется очень точное регулирование количества впрыскиваемого топлива и момента начала впрыска в зависимости от таких переменных, как темпе­ратура, частота вращения коленчатого вала, на­грузка и высота над уровнем моря. Это может быть обеспечено только при помощи электрон­ных систем управления. Сегодня электронные системы управления полностью вытеснили механические. Это единственный метод управ­ления, позволяющий осуществлять непрерывный мониторинг функций системы впрыска топлива, влияющих на содержание вредных веществ в выбросах автомобиля. В некоторых случаях законодательство требует также нали­чия системы бортовой диагностики.

Регулирование количества впрыскиваемого топлива и момента начала впрыска осуществля­ется системами EDC (электронная система управ­ления дизельным двигателем) при помощи электромагнитных клапанов высокого или низкого давления, или иных исполнительных устройств. Регулирование подачи топлива, т.е. количества топлива на один градус поворота коленчатого вала, может осуществляться косвенным образом, например, при помощи сервоклапана и регулиро­вания величины подъема игольчатого клапана.

Разновидности

Рассматривая конструкции, которые предполагают распределенный впрыск топлива, можно выделить наиболее распространенные моменты:

  • K-JETRONIC – механический элемент в непосредственной подаче топлива, используется часто.
  • L-JETRONIC – система, в которой наблюдается импульсное действие элементов, находящихся под электронным управлением.
  • KE-JETRONIC – механический элемент подачи топлива непрерывного типа.

Надо отметить, что все эти варианты уже устарели и являются очень капризными конструкциями.

Таким образом, система может иметь несколько разновидностей, зависящих от определенного набора факторов и характеристик работы.

Как работает система распределенной подачи ТС

Работа основных элементов системы – форсунок напрямую зависит от центра управления – управляющего блока, состоящего из бортового компьютера. Основной функцией управляющего блока является прием электрических сигналов, поступающих от входных датчиков, с последующей обработкой и преобразованием в управляющие сигналы, которые передаются на электромагнитные клапаны топливных форсунок и механизмы исполнения.

Помимо основных функций, блок управления выполняет и дополнительные задачи – проводит своевременную диагностику топливной системы на предмет выявления любых неполадок или поломок в ее работе.

При обнаружении неполадок блок управления сообщает о них водителю через контрольные лампы на приборной панели — Check engine, Check. Информация о более сложных поломках заносится в блок памяти для дальнейшего использования при повторной диагностике.

Расчет нужного количества топлива, происходит на основании данных полученных от температурных датчиков (температуры двигателя и поступающего воздуха), расхода воздуха, подсчета скорости вращения коленвала, угла открытия заслонки и т.д.

Произведя необходимые расчеты на основании полученных данных, бортовой компьютер посылает сигналы в виде электрических импульсов на форсунки для их открытия. Принимая сигналы, форсунки открывают клапаны, через которые топливо под высоким давлением поступает в топливный коллектор.

Применяемость двигателя 1.4 TSI ЕА211 на автомобилях по годам выпуска

Марка, модель автомобилей с 1.4 TSI ЕА211 Модель двигателя 1.4 TSI ЕА211 годы применения
Сиат Леон III CPWA 03.2014 —
Шкода Октавия III 03.2015 —
Фольксваген Гольф VII 04.2013 —
Ауди A3 8V 02.2014 —
CZCC 02.2016 —
CMBA 05.2012 – 04.2014
Сиат Леон III 11.2012 – 03.2014
Фольксваген Гольф VII 08.2012 – 04.2014
Ауди A1 CZCA 11.2014
A3 8V 07.2013 – 04.2016
Q3 8U 06.2016
Сиат Леон III 04.2014 —
Толедо IV 07.2015 —
Шкода Кадьяг 03.2017 —
Рапид 04.2015 —
Фабия III 04.2018 – 08.2018
Superb III 03.2015 —
Йети 06.2015 —
Фольксваген Гольф VII 04.2014 —
Пассат B8 07.2014 —
Тигуан I 05.2015 – 01.2016
Тигуан II 06.2016 —
Сиат Леон III CHPA 11.2012 – 03.2014
Шкода Октавия III 12.2012 – 05.2015
Фольксваген Гольф VII 08.2012 – 04.2014
Ауди A1 8X CPTA 02.2013 – 11.2014
A3 8V 02.2013 – 04.2016
Сиат Ибица (6J/6P) 12.2013 – 08.2015
Фольксваген Гольф VII 08.2012 – 04.2014
Поло V 10.2012 – 03.2014
Ауди A4 B9 CZDA, CVNA 08.2015 —
A5 F5 2017 —
Сиат Алхамбра II 05/2015 —
Фольксваген Шаран II
Шкода Кадьяг 03.2017 —
Октавия III 05.2015 —
Йети 06.2015 —
Фольксваген Битл 10.2014 —
Гольф VII 04.2014 – 06.2017
Пассат B8 07.2014 —
Тигуан I 05.2015 – 01.2016
Тигуан II 06.2016 —
Тоуран II 05.2015 —
Ауди A1 CZEA 11.2014 —
A3 8V 04.2014 —
Q2 10.2016 —
Q3 8U 11.2014 —
Сиат Ибица (6J/6P) 09.2015 —
Леон III 04.2014 —
Атека 04.2016 —
Шкода Суперб III 03.2015 —
Кадьяг 03.2017 —
Фольксваген Гольф VII 04.2014 – 03.2017
Пассат B8 07.2014 —
Поло V 04.2014 —
Тигуан II 06.2016 —

Вывод. Одноразовый конструктив мотора не позволяет ремонтировать блок цилиндров проточкой под ремонтные размеры после окончания ресурса. Капитальный ремонт возможен но агрегатным способом, то есть, заменой изношенных узлов и деталей (блок, коленвал, и т. д.), такой ремонт более дорогой, в отличие от установки контрактного двигателя.

Разнообразие mono motronic

Семейство систем Motronic родилось в 1979 году и на сегодняшний день насчитывает более пяти подвидов, использующихся для управления инжекторными моторами разных типов.

К примеру, технология mono motronic контролирует двигатели с центральным впрыском, m-motronic, me-motronic и ke-motronic – моторы с распределённым впрыском, а med-motronic – агрегаты с непосредственным.

Кстати, технологию Motronic нередко называют объединённой системой впрыска топлива и зажигания, что довольно точно описывает её суть. Давайте немного ближе познакомиться с этим творением немецких умов на примере разновидности m-motronic.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector