Топливная система автомобиля, система подачи топлива — устройство, назначение, принцип работы

Содержание:

Инжекторные топливные системы

Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.

Рекомендуем: Устройство и принцип работы современного гидротрансформатора

Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.

В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.

Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.

Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:

  • угол поворота дроссельной заслонки
  • степень разрежения во впускном коллекторе
  • частота вращения коленчатого вала
  • температура всасываемого воздуха и охлаждающей жидкости
  • концентрация кислорода в отработавших газах
  • атмосферное давление
  • напряжение аккумуляторной батареи
  • и др.

Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:

  • топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
  • появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
  • достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
  • обеспечивается лучшая приемистость двигателя
  • в отработавших газах содержится меньше вредных веществ

Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.

Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.

НЕИСПРАВНОСТИ И СЕРВИСНОЕ ОБСЛУЖИВАНИЕ

В процессе эксплуатации транспортного средства топливная система автомобиля испытывает нагрузки, приводящие к ее нестабильному функционированию или выходу из строя. Наиболее распространенными считаются следующие неисправности.

НЕДОСТАТОЧНОЕ ПОСТУПЛЕНИЕ (ИЛИ ОТСУТСТВИЕ ПОСТУПЛЕНИЯ) ГОРЮЧЕГО В ЦИЛИНДРЫ ДВИГАТЕЛЯ

Некачественное топливо, длительный срок службы, воздействие окружающей среды приводят к загрязнению и засорению топливопроводов, бака, фильтров (воздушного и топливного) и технологических отверстий устройства приготовления горючей смеси, а также поломке топливного насоса. Система потребует ремонта, который будет заключаться в своевременной замене фильтрующих элементов, периодической (раз в два-три года) прочистке топливного бака, карбюратора или форсунок инжектора и замене или ремонте насоса.

ПОТЕРЯ МОЩНОСТИ ДВС

Неисправность топливной системы в данном случае определяется нарушением регулировки качества и количества горючей смеси, поступающей в цилиндры. Ликвидация неисправности связана с необходимостью проведения диагностики устройства приготовления горючей смеси.

УТЕЧКА ГОРЮЧЕГО

Утечка горючего – явление весьма опасное и категорически не допустимое. Данная неисправность включена в «Перечень неисправностей…», с которыми запрещается движение автомобиля. Причины проблем кроются в потере герметичности узлами и агрегатами топливной системы. Ликвидация неисправности заключается либо в замене поврежденных элементов системы, либо в подтягивании креплений топливопроводов.

Таким образом, система питания является важным элементом ДВС современного автомобиля и отвечает за своевременную и бесперебойную подачу топлива к силовому агрегату.

Одновременный впрыск топлива

В этом виде впрыска топлива все форсунки открываются и закрываются одновре­менно. Это означает, что время, необходи­мое для испарения топлива, оказывается разным для каждого цилиндра. Тем не ме­нее, для того чтобы обеспечить эффектив­ное образование топливовоздушной смеси, количество необходимого для сгорания топлива впрыскивается двумя порциями, по одной на каждый оборот коленчатого вала. В этом виде впрыска топливо для не­которых цилиндров, как только впускной клапан открывается, поступает в откры­тый впускной канал. В этом случае момент впрыска топлива не изменяется.

Групповой впрыск топлива

В этом виде форсунки комбинируются с образованием двух групп. При одном по­вороте коленчатого вала одна группа фор­сунок впрыскивает всё количество топ­лива, предназначенное для данных цилин­дров, а при следующем повороте впрыск топлива осуществляется другой группой форсунок.

Такая конфигурация допускает выбор угла опережения впрыска в зависимости от ре­жима работы двигателя. Кроме того, ис­ключается нежелательный впрыск топлива

в открытые впускные каналы. В этом виде время, имеющееся для испарения топлива, также разное для разных цилиндров.

Последовательный впрыск топлива (SEFI)

В этом виде топливо впрыскивается инди­видуально в каждый цилиндр, то есть фор­сунки включаются в работу одна за другой в соответствии с порядком работы цилин­дров. Продолжительность и угол опереже­ния впрыска топлива относительно ВМТ одинаковы для всех цилиндров, а топливо накапливается перед входом в каждый ци­линдр.

Угол опережения впрыска топлива про­граммируется и может быть адаптирован к режиму работы двигателя.

Индивидуальный впрыск топлива в каждый цилиндр (CIFI)

Этот вид впрыска топлива предполагает наибольшую степень свободы проектиро­вания. По сравнению с последовательным впрыском топлива способ CIFI имеет то преимущество, что продолжительность впрыска может быть индивидуально изме­нена для каждого цилиндра. Это позволяет компенсировать отклонения, например, в отношении заряда цилиндров.

Рис.5

а — Одновременный впрыск топлива

b — Групповой впрыск топлива

с — Последователь­ный впрыск топ­лива (SEFI)

и ин­дивидуальный впрыск топлива в каждый ци­линдр (CIFI)

Непосредственный впрыск топлива

В двигателях с непосредственным впрыс­ком бензина образование топливовоз-душной смеси происходит в камере сго­рания. Во время такта впуска в цилиндр через открытый впускной клапан посту­пает только воздух, а топливо впрыски­вается специальными форсунками не­посредственно в цилиндры.

Обзор

Требование достижения высокой мощ­ности двигателей при низком расходе топ­лива привело к «реанимации» системы не­посредственного впрыска бензина («re­discovery» — повторному открытию). Ещё в далёком 1937 году был создан авиацион­ный двигатель с механической системой непосредственного впрыска бензина. В 1952 году был создан первый серийный легковой автомобиль «Gutbrod» с механи­ческой системой непосредственного впрыска бензина, а следом за ним в 1954 году «Mercedes SL».

В то время проектирование и изготовление двигателя с непосредственным впрыском бензина было делом очень сложным. Более того, такая технология предъявляла очень высокие требования к используемым мате­риалам. Другой проблемой было обеспече­ние достаточного срока службы двигателя.

Все эти обстоятельства длительное время не допускали прорыва в создании двигате­лей с непосредственным впрыском бен­зина.

Рис. 1

1-Топливный насос высокого давления (ТНВД) 2-Соединенное линией низкого давления топ­лива 3-Линия высокого давления топ­лива 4-Топливный коллектор 5-Форсунки высо­кого давления топлива 6-Датчик высокого давления топ­лива 7-Свеча зажигания 8-Регулятор давле­ния топлива 9-Поршень

Принцип работы

В системах непосредственного впрыска бензина топливо под высоким давлением впрыскивается прямо в камеру сгорания цилиндра двигателя. Следовательно, обра­зование топливовоздушной смеси, подобно дизелям, происходит внутри цилиндра (внутреннее смесеобразование).

Топливоподкачивающий насос

Основной топливоподкачавающий насос обеспечивает бесперебойную подачу топлива из баков к ТНВД при работающем двигателе. Он обычно приводится в действие от коленчатого или распределительного вала двигателя. Может применяться и автономный электродвигатель, питаемый от генератора ТС. Использование электропривода обеспечивает равномерную подачу топлива независимо от частоты вращения коленчатого вала и возможность аварийного отключения всей системы. Существуют различные конструкции топливоподкачивающих насосов. Они могут быть:

  • шестеренными
  • плунжерными (поршневыми)
  • коловратными (пластинчатого типа)

Как правило, применяются плунжерные и коловратное насосы.

Плунжерный топливоподкачивающий насос

Плунжерный топливоподкачивающий насос состоит из корпуса 5, плунжера 7 с пружиной 6, толкателя 10 с роликом 77, пружиной 9 и штоком 8, а также клапанов — впускного 4 и нагнетательного 1 с пружинами. Толкатель с плунжером могут перемещаться вверх-вниз. Перемещение вверх происходит при повороте эксцентрика 72, изготовленного как одно целое с кулачковым валом ТНВД; перемещение вниз обеспечивают пружины 6 и 9.

При сбегании выступа эксцентрика с ролика толкателя плунжер под действием пружины б перемещается вниз, вытесняя топливо, находящееся под ним, в нагнетательную магистраль насоса. В это время нагнетательный клапан закрыт, а впускной под действием разрежения над плунжером открыт, и топливо поступает из впускной магистрали в надплунжерную полость. При движении толкателя и плунжера вверх впускной клапан закрывается под действием давления топлива, а нагнетательный, наоборот, открывается, и топливо из надплунжерной полости поступает в нижнюю камеру под плунжером. Таким образом, нагнетание топлива происходит только при движении плунжера вниз.

Если подачу топлива в цилиндры двигателя уменьшают, в выпускном трубопроводе насоса, а значит, и в полости под плунжером давление возрастает. В этом случае плунжер не может опуститься вниз даже под действием пружины 6, и толкатель со штоком перемещается вхолостую. По мере расходования топлива давление в нагнетательной полости понижается, и плунжер под действием пружины 6 опять начинает перемещаться вниз, обеспечивая подачу топлива.

Плунжерный топливоподкачивающий насос обычно совмещен с насосом 2 ручной подкачки топлива. Данный насос устанавливается на входе в основной топливоподкачивающий насос и приводится в действие вручную за счет перемещения поршня 3 со штоком. При движении поршня вверх под ним образуется разрежение, открывается впускной клапан, и топливо заполняет подплунжерное пространство. При перемещении поршня вниз впускной клапан закрывается, а нагнетательный открывается, позволяя топливу пройти далее по топливной магистрали.

Коловратный топливоподкачивающий насос

В мощных быстроходных дизелях применяются в основном коловратные топливоподкачивающие насосы. Ротор 7 насоса приводится во вращение от коленчатого вала двигателя. В роторе имеются прорези, в которые вставлены пластины 6. Одним (наружным) концом пластины скользят по внутренней поверхности направляющего стакана 8, а другим (внутренним) — по окружности плавающего пальца 5, расположенного эксцентрически относительно оси ротора. При этом они то выдвигаются из ротора, то вдвигаются в него. Ротор и пластины делят внутреннюю полость направляющего стакана на камеры А, Б и В, объемы которых при вращении ротора непрерывно меняются. Объем камеры А увеличивается, поэтому в ней создается разрежение, под действием которого топливо засасывается из впускной магистрали. Объем камеры В уменьшается, давление в ней повышается, и топливо вытесняется в нагнетательную полость насоса. Топливо, находящееся в камере Б, переходит от входного отверстия стакана к выходному. При повышении давления в нагнетательной полости до определенного уровня открывается редукционный клапан 2, преодолевая усилие пружины 7, и излишек топлива перепускается обратно во впускную полость насоса. Поэтому в нагнетательной полости и выпускном трубопроводе поддерживается постоянное давление. Перед пуском, когда двигатель и, следовательно, основной топливоподкачивающий насос не работают, топливо через него может прокачиваться предпусковым топливоподкачивающим насосом. В этом случае открывается перепускной клапан 3, преодолевая усилие пружины 4. В закрытом положении тарелка этого клапана перекрывает отверстия в тарелке редукционного клапана.

Виды систем впрыска топлива

Моновпрыск (центральный впрыск) – одна форсунка, которая распыляет топливо на все цилиндры и устанавливается, как правило, во впускном коллекторе. Моновпрыск теряет популярность в связи с ужесточением экологических требований к дозировке топлива.

Распределенный впрыск – для каждого цилиндра установлена отдельная изолированная форсунка во впускном коллекторе, вблизи впускного клапана.

Типы распределенного впрыска

  • Фазированный впрыск – отдельное управление каждой форсункой, при чем форсунка открывается незадолго перед тактом впуска.
  • Непосредственный впрыск – впрыск топлива форсункой непосредственно в камеру сгорания.
  • Одновременный впрыск, когда все форсунки открываются в одно время.
  • Попарно-параллельный впрыск – когда форсунки открываются попарно.

На современных автомобилях применяется электронное управление системой впрыска, это когда системой подачи топлива управляют специальные микроконтроллеры, которые воспринимаеют сигналы от датчиков системы питания.

Фильтр тонкой очистки топлива

Для окончательной  очистки топлива на дизеле установлен фильтр тонкой очистки ФТ – 75А.

Который представляет собой чугунный корпус, в который ввернут штуцер. На штуцер устанавливается неразборной бумажный фильтрующий элемент ЭФТ – 75А. Фильтрующий элемент закрывается стаканом, который поджимается к корпусу стяжным болтом. Для уплотнения между корпусом и стаканом установлено кольцо. Отверстие для стяжного болта для слива топлива из фильтра закрыто пробкой. В отверстия корпуса фильтра ввернуты болты крепления топливопровода. На корпусе фильтра для выпуска воздуха при заполнении системы топливом имеется продувочный вентиль, состоящий из специального болта, шарика и иглы.

Нагнетаемое подкачивающим насосом топливо по топливопроводу поступает в фильтр. Пройдя через фильтрующий элемент, чистое топливо по каналу стяжного болта поступает в топливопровод подвода топлива к ТНВД.

Виды форсунок

Форсунки различаются в зависимости от способа осуществления впрыска топлива. Давайте рассмотрим основные виды форсунок

  • Электромагнитные форсунки;
  • Электрогидравлические форсунки;
  • Пьезоэлектрические форсунки.

Устройство электромагнитной форсунки

1 — сетчатый фильтр; 2 — электрический разъем; 3 – пружина; 4 — обмотка возбуждения; 5 — якорь электромагнита; 6 — корпус форсунки; 7 — игла форсунки; 8 – уплотнение; 9 — сопло форсунки.

Электромагнитная форсунка нашла свое применение на бензиновых двигателях, в том числе оборудованных системой непосредственного впрыска. Электромагнитной форсунка имеет простую конструкцию, которая включает электромагнитный клапан с иглой и соплом.

Как работает электромагнитная форсунка

Работа электромагнитной форсунки осуществляется в соответствии с заложенным алгоритмом в электронный блок управления. Электронный блок в определенный момент подает напряжение на обмотку возбуждения клапана. Вследствие этого создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло форсунки, после чего производится впрыск топлива. Когда напряжение исчезает, пружина возвращает иглу форсунки обратно на седло.

Устройство электрогидравлической форсунки

1 — сопло форсунки; 2 – пружина; 3 — камера управления; 4 — сливной дроссель; 5 — якорь электромагнита; 6 — сливной канал; 7 — электрический разъем; 8 — обмотка возбуждения; 9 — штуцер подвода топлива; 10 — впускной дроссель; 11 – поршень; 12 — игла форсунки.

Электрогидравлическая форсунка применяется на дизельных двигателях. Электрогидравлическая форсунка включает электромагнитный клапан, камеру управления, впускной и сливной дроссели.

Как работает электрогидравлическая форсунка

Работа электрогидравлической форсунки основана на использовании давления топлива при впрыске. В обычном положении электромагнитный клапан закрыт и игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Давление топлива на иглу меньше давления на поршень, благодаря этому впрыск топлива не происходит.

Когда электронный блок управления дает команду на электромагнитный клапан, открывается сливной дроссель. Топливо вытекает из камеры управления через сливной дроссель в сливную магистраль. Впускной дроссель препятствует выравниванию давлений в камере управления и впускной магистрали, вследствие чего давление на поршень снижается, а давление топлива на иглу форсунки не изменяется. Игла форсунки поднимается и происходит впрыск топлива.

Устройство пьезоэлектрической форсунки

1 — игла форсунки; 2 – уплотнение; 3 — пружина иглы; 4 — блок дросселей; 5 — переключающий клапан; 6 — пружина клапана; 7 — поршень клапана; 8 — поршень толкателя; 9 – пьезоэлектрический элемент; 10 — сливной канал; 11 — сетчатый фильтр; 12 — электрический разъем; 13 — нагнетательный канал.

Пьезофорсунка (пьезоэлектрическая форсунка) является самым совершенным устройством, обеспечивающим впрыск топлива в современных автомобилях. Форсунка применяется на дизельных двигателях с системой впрыска Common Rail. Основные преимущества пьезоэлектрической форсунки в точности дозировки и быстроте срабатывания. Благодаря этому пьезофорсунка обеспечивает многократный впрыск на протяжении одного рабочего цикла.

Как работает пьезофорсунка (пьезоэлектрическая форсунка)

Работа пьезофорсунки основана на изменении длины пьезокристалла при подачи напряжения. Пьезоэлектрическая форсунка состоит из: корпуса, пьезоэлемента, толкателя, переключающего клапана и иглы.

Как работает система впрыска Common Rail

На блок управления двигателя подается сигнал от датчиков, благодаря которым регулируется необходимое количество топлива, которое подается топливным насосом высокого давления через клапан дозирования топлива. ТНВД накачивает топливо в топливную рампу.

В определенный момент блок управления двигателем подает команду открытия клапана форсунки. Таким образом, блок управления управляет системой впрыска в зависимости от режимов работы двигателя.

Чтобы добиться высокой эффективности работы двигателя в системе Common Rail применяют многократный впрыск топлива на протяжении одного цикла работы двигателя. Виды впрысков: предварительный впрыск, основной впрыск и дополнительный впрыск.

  • два предварительных впрыска — на холостом ходу;
  • один предварительный впрыск — при повышении нагрузки;
  • предварительный впрыск не производится — при полной нагрузке.

Основной впрыск реализует работу двигателя.

Дополнительный впрыск производится для регенирации сажевого фильтра за счет повышения температуры отработавших газов.

Устройство комбинированной системы впрыска

Комбинированная система впрыска состоит из следующих элементов:

  • Система непосредственного впрыска (форсунки, топливная рампа высокого давления);
  • Система распределенного впрыска (форсунки, топливная рампа низкого давления);
  • Топливный насос высокого давления.

Такие элементы системы непосредственного впрыска, как форсунки, устанавливаются непосредственно в камерах сгорания цилиндров. Топливная рампа высокого давления поддерживает давление 20 МПа. Форсунки системы распределенного впрыска устанавливаются перед впускными клапанами в каналах впускного коллектора.

Впускные и выпускные трубопроводы

Впускные трубопроводы служат для подвода горючей смеси в цилиндры двигателя, а выпускные — для отвода отработавших га­зов из цилиндров.

Впускные трубопроводы у двигателей с V-образным расположе­нием цилиндров располагаются в развале между цилиндрами и имеют сложную форму. Трубопроводы должны оказывать мини­мальное сопротивление перемещению газов, так как это необхо­димо для лучшего наполнения цилиндров двигателя.

У всех карбюраторных двигателей впускные трубопроводы имеют устройства для подогрева горючей смеси. Для этой цели каналы, по которым горючая смесь подается в цилиндры двигателя, омы­ваются горячей водой. При работающем двигателе горячая вода подогревает трубопровод, а вместе с ним и горючую смесь, улуч­шая испарение бензина.

Устройство для подогрева горючей смеси включает в себя заслонку (рис. 10), на наружном конце оси которой установлен сектор с надписями «Зима» и «Лето». Сектор удерживается в нужном положе­нии при помощи стопорной шпильки и гайки 7. Когда температура наружного воздуха поднимется выше

5 С, заслонку нужно повернуть в положение «Лето». При этом она занимает горизонтальное поло­жение, и отработавшие газы напрямую выходят в глушитель, меньше соприкасаясь со стенкой впускной трубы и меньше подогревая горю­чую смесь. Зимой при эксплуатации заслонку поворачивают в поло­жение «Зима», и она перегораживает выпускной трубопровод. Отра­ботавшим газам приходится огибать заслонку сверху, соприкасаясь со стенкой впускной трубы и более интенсивно ее нагревать.

Рис.10 Элементы системы впуска и выпуска отработавших газов и подогрева горючей смеси:

а – впускной и выпускной трубопроводы (двигатель автомобиля ГАЗ – 3102 «Волга»); б и в – положение заслонки, соответствующие наименьшему и наибольшему подогреву смеси; г – глушитель шума системы выпуска; 1 – впускной трубопровод; 2 – прилив для установки карбюратора; 3 – отверстие для штуцера трубопровода вакуумного усилителя тормозных механизмов; 4 – прокладка; 5 – выпускной трубопровод; 6 – сектор регулировки подогрева; 7 – стопорная шпилька и гайка; 8 – заслонка; 9, 14 – днища глушителя; 10 – корпус; 11 – перегородка; 12 – камера; 13 – внутренняя труба; 15 – выпускная труба; 16 – патрубки передней стенки глушителя; 17 – приемные трубы глушителя.

Подогрев горючей смеси необходим потому, что смесь, поступа­ющая из карбюратора во впускной трубопровод, содержит значи­тельную часть топлива в виде капелек. Они оседают на стенках впуск­ного трубопровода, образуя сплошную топливную пленку. Топлив­ная пленка поступает в цилиндр неравномерно, что приводит к из­менению состава горючей смеси и ухудшению работы двигателя.

Однако излишний перегрев горючей смеси тоже вреден, так как при сильном расширении смеси весовой заряд цилиндров уменьшается, что приводит к потери мощности.

Выпускные трубопроводы отливаются из чугуна, у V-образныхдвигателей для каждого ряда цилиндров отдельно. У рядных двигателей в выпускном трубопроводе установлена заслонка для регулировки степени подогрева горючей смеси.

Устройство системы питания автомобиля

Как говорится, наиболее подверженные неисправностям системы питания и электрооборудования. Раз уж вы столкнулись с неисправностями ТНВД КАМАЗ, давайте выберем наиболее подходящую модель ТНВД КАМАЗ для вашего автомобиля. Для этого следует изучить технические характеристики ТНВД КАМАЗ.

Первым делом рассмотрим ТНВД 33-02, 334, 332-30, 337-80.01 двигателя КАМАЗ-740

ТНВД КАМАЗ 740 модели 33-02, 3310, 334, 332-30, 337-80.01 – это топливные насосы высокого давления с V-образным расположением секций и между секционным расстоянием равным 36 мм.

Топливные насосы КАМАЗ 740 моделей 33-02, 33-10, 334, 337-80.01 включают в комплектациюмеханический всережимный регулятор и корректор.

ТНВД КАМАЗ 332-30, в отличие от предыдущих моделей,имеет механический двухрежимный регулятор с корректорами (прямым и обратным). Двигатели КАМАЗ, которые укомплектованы следующими моделями ТНВД, соответствуют нормам токсичности EURO-0. Если возникают какие либо неполадки с двигателем или двигатель неравномерно работает это признак неисправности ТНВД КАМАЗ.

Технические характеристики ТНВД КАМАЗ 740

Модель ТНВД Число секций ТНВД Диаметр/ максимальный ход плунжера (мм) Модель форсунки Модель двигателя

КАМАЗ 740

N ном. (л.с.) при n (мин -1) Где применяется ТНВД 332-30
33-02 8 9/10 33-02 740.10 210/2600 КамАЗ: 5320, 5410, 5511, 54112, 55102, 4310, 43101; УРАЛ-4320, ЗИЛ-133ГЯ
33-10 8 9/10 271-01 271-02 740.10-20 220/2600 КамАЗ: 43101,4326, 54112, 55111, 5320, 5410, 53213,53202,431017, 551107, 55102, 551027, 541007, 551117, 431017; УРАЛ 43207; ЗИЛ-133ГЯ
334 8 9/10 271-01 271-02 7403 260/2600 КамАЗ: 43114,4326-01, 43118-01, 53228-01, 55111-01, 43101-01, 53229-01, 53212-01, 54112-01, 53211-01, 53213-01; ГАЗ-5903
332-30 8 10/11 272-02 7408.10 195/2200 ЛиАЗ-5256
337-80.01 8 10/11 273-21 740.14-300 300/2600 Спец. автомобили

Технические характеристики ТНВД 337-20 двигателя

КАМАЗ-740 стандарта ЕВРО2

ТНВД КАМАЗ 740 337-20 – это топливный насос высокого давления, который имеет V-образное расположение секций с расстоянием между секциями 36 мм.

ТНВД КАМАЗ 337-20 выдает давления впрыска топлива до 1200 Бар. В комплект ТНВД 337-20 входит всережимный механический регулятор с обратным и прямым корректором, а также корректором по наддуву. Причем эти двигатели соответствуют стандарта EURO-2. Производство двигателей с ТНВД 337-20 началось еще в сентябре 2002 года.

Технические характеристики ТНВД 337-20 двигателя

КАМАЗ 740 ЕВРО 2

Модель ТНВД Число секций ТНВД Диаметр/ максимальный ход плунжера (мм) Модель форсунки Модель двигателя N ном. (л.с.) при n (мин -1) Где применяется ТНВД 337-20
337-20 8 11/13 273-21 740.30-260Е2 260/2200 ЕВРО-2 КамАЗ-65115, 65116, 65117, 6540
337-20.03 8 11/13 273-20 740.51-320Е2 320/2200 ЕВРО-2 КамАЗ-6520, 6522
337-20.04 8 11/13 273-20 740.50-360Е2 360/2200 ЕВРО-2 КамАЗ- 6360-06, 6460-06, 5360-06, 5460-06

Технические характеристики ТНВД 337-40, 337-70 двигатель

КАМАЗ-740 ЕВРО-1

ТНВД 337-40 КАМАЗ 740 – это топливный насос высокого давления, который оснащен секциями с V-образным расположением и имеет расстояние между секциями 36 мм. ТНВД 337-40 оснащается регулятором с двумя режимами, а также прямым и обратным корректором. Производятся с 1995 года.

Модель ТНВД Число секций ТНВД Диаметр/ максимальный ход плунжера (мм) Модель форсунки Модель двигателя N ном. (л.с.) при n (мин -1) Где применяется ТНВД 337-40
337-40 8 11/13 273-30 273-31 740.11-240Е1 7405.10 240/2200 240/2200 ЕВРО-1 КамАЗ-55111-02, 65115, 53212-02, 54112-02, 54115, 53215, 53205-02, 53213, 53202, 53229-02, 54105-02, 53228-02, 4326, 4350.
337-40.01 8 11/13 273-31 740.22-240 240/2000 Правила 96 Комбайн «Дон-1500»
337-40.02 8 11/13 273-31 740.02-180 180/2200 Правила 96 Трактора Т-150К, ХТЗ-170, IFA кормоизмельчитель
337-70 8 11/13 273-31 740.11-240 240/2200 Автобусы: НефАЗ-5297, ПАЗ-5272, ЛиАЗ-5256

Технические характеристики ТНВД 337-42 двигателя

КАМАЗ-740 ЕВРО-1

ТНВД 337-42 – это топливный насос высокого давления, который оснащен секциями с V-образным расположением и имеет расстояние между секциями 36 мм. ТНВД 337-42 оснащается механическим все режимным регулятором, а также прямым и обратным корректором. Производятся с 2002 года.

Модель ТНВД Число секций ТНВД Диаметр/ макс. ход плунжера (мм) Модель форсунки Модель двигателя N ном. (л.с.) при n (мин -1) Где применяется ТНВД 337-42
337-42 8 11/13 273-20 740.13-260 260/2200 ЕВРО-1 КамАЗ-43118, 44108, 65111, 6540
337-42.01 8 11/13 273-20 740.22-240 240/2000 Правила 96 Комбайн «Дон-1500»
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector