Приложение а. погрешности вычислений
Содержание:
- Введение
- Пределы
- Виды маркирования
- Формула погрешности
- ПОГРЕШНОСТИ И КЛАССЫ ТОЧНОСТИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ
- Пример нахождения показания амперметра по приведенной погрешности
- Пределы
- Определение погрешности
- Какие классы точности бывают, как обозначаются
- Виды маркирования
- Описание
- Расчёт ошибок косвенных измерений
- Как определить класс точности электроизмерительного прибора, формулы расчета
- Виды погрешностей амперметра
- Класс точности
- Какие классы точности бывают, как обозначаются
Введение
Все, что сказано в этом введении, запоминать не нужно. это справочный материал, к которому вы будете обращаться при выполнении лабораторных работ.
1. Как определять погрешности измерений
Выполнение лабораторных работ связано с измерением различных физических величин и последующей обработкой их результатов.
Измерение — нахождение значения физической величины опытным путем с помощью средств измерений.
Прямое измерение — определение значения физической величины непосредственно средствами измерения.
Косвенное измерение — определение значения физической величины по формуле, связывающей ее с другими физическими величинами, определяемыми прямыми измерениями.
Введем следующие обозначения:
A, B, C, … — физические величины.
Aпр — приближенное значение физической величины, т.е. значение, полученное путем прямых или косвенных измерений.
ΔA — абсолютная погрешность измерения физической величины.
ε — относительная погрешность измерения физической величины, равная:
ΔиA — абсолютная инструментальная погрешность, определяемая конструкцией прибора (погрешность средств измерения; указывается в каждой работе при описании прибора в разделе Оборудование и средства измерения)
ΔоA — абсолютная погрешность отсчета (получающаяся от недостаточно точного отсчета показаний средств измерения), она равна в большинстве случаев половине цены деления; при измерении времени — цене деления секундомера или часов.
Максимальная абсолютная погрешность прямых измерений складывается из абсолютной инструментальной погрешности и абсолютной погрешности отсчета при отсутствии других погрешностей:
ΔA=ΔиA + ΔоA
Абсолютную погрешность измерения обычно округляют до одной значащей цифры (ΔA≈0,17=0,2); численное значение результата измерений округляют так, чтобы его последняя цифра оказалась в том же разряде, что и цифра погрешности (А=10,332≈10,3).
Результаты повторных измерений физической величины А, проведенных при одних и тех же контролируемых условиях и при использовании достаточно чувствительных и точных (с малыми погрешностями) средств измерения, отличаются друг от друга.
В этом случае Aпр находят как среднее арифметическое значение всех измерений, а ΔA (ее в этом случае называют случайной погрешностью) определяют методами математической статистики.
В школьной лабораторной практике такие средства измерения практически не используются. Поэтому при выполнении лабораторных работ необходимо определять максимальные погрешности измерения физических величин. При этом для получения результата достаточно одного измерения.
Относительная погрешность косвенных измерений определяется, как показано в таблице 1.
Абсолютная погрешность косвенных измерений определяется по формуле ΔA=Aпрε (ε выражается десятичной дробью).
Таблица 1
Формулы для нахождения относительной погрешности косвенных измерений
Nº п/п | Формула физической величины | Формула относительной погрешности |
---|---|---|
1 | ||
2 | ||
3 |
A=B+C |
|
4 |
2. О классе точности электроизмерительных приборов
Для определения абсолютной инструментальной погрешности прибора надо знать его класс точности. Класс точности γпр измерительного прибора показывает, сколько процентов составляет абсолютная инструментальная погрешность ΔиA от всей шкалы прибора (Amax):
Класс точности указывается при описании прибора в разделе Оборудование и средства измерения. Cуществуют следующие классы точности электроизмерительных приборов: 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4. Зная класс точности прибора (γпр) и всю его шкалу (Amax), определяют абсолютную погрешность ΔиA измерения физической величины А этим прибором:
3. Как сравнивать результаты измерений
1. Записать результаты измерений в виде двойных неравенств:
A1 пр – ΔA1 < A1 пр < A1 пр + ΔA1
A2 пр – ΔA2 < A2 пр < A2 пр + ΔA2
2. Сравнить полученные интервалы значений (рис.1): если интервалы не перекрываются, то результаты неодинаковы, если перекрываются — одинаковы при данной относительной погрешности измерений.
Рисунок 1.
4. Как оформлять отчет о проделанной работе
Отчетом о проделанной работе является форма, находящаяся в левом нижнем окне. После ее заполнения надо нажать на кнопку «Отправить результаты на сервер».
Значения измеренных физических величин переносятся в таблицу результатов автоматически после нажатия соответствующей кнопки.
Значения остальных величин и ответ на контрольный вопрос вводятся с клавиатуры.
домашней странице BARSIC
Пределы
Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.
Базовый способ определения погрешности
При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.
Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.
Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.
Класс точности 2,5
Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.
Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.
Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.
Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.
Пример расчета погрешности
Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.
Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.
Виды маркирования
Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.
Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.
Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.
Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.
Формула погрешности
Таким образом, общая формула для записи величин с погрешностью выглядит следующим образом:
$$X = x \pm \Delta x$$
где $X$ — измеряемая величина, $x$ — результат измерений, $\Delta x$ — погрешность.
Выходит, что истинное значение длины карандаша располагается в диапазоне значений от 11.5 см до 12.5 см.
При более точных замерах до миллиметра: от 12.15 см до 12.25 см.
Однако остается один последний интересный момент. Несмотря на то, что мы провели замеры и определили длину, философски говоря, вопрос остается вопросом: так какую же точную длину имеет карандаш?
Таковы погрешности. Где-то от, где-то до.
А точно — никак.
ПОГРЕШНОСТИ И КЛАССЫ ТОЧНОСТИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ
ПОГРЕШНОСТИ И КЛАССЫ ТОЧНОСТИЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ Измеренная прибором величина всегда отличается от истинного значения на некоторое число, называемое погрешностью прибора. Погрешности измерительных приборов определяют поверкой, т. е. сравнением показаний поверяемого прибора с показаниями более точного, образцового прибора при измерении ими одной и той же величины. Значение измеряемой величины, определенное по образцовому прибору, принято считать действительным. Однако действительное значение отличается от истинного на погрешность, присущую данному образцовому прибору. Различают абсолютную, относительную и приведенную погрешности измерения.
Пример нахождения показания амперметра по приведенной погрешности
Для примера рассматривается аналоговый измеритель со шкалой до 25 А.
На шкале имеется обозначение класса точности 2.5, кружок или квадрат отсутствует, поэтому эта погрешность приведенная.
Y=Dх/Xп×100=+/- p
При Хп= 25А и значении p = 2.5 можно рассчитать абсолютную погрешность:
Δх =25/100×2.5=0.625 A
Если пользователь обнаружит на панели класс точности заключенный в квадрат, то погрешность нужно будет определять в процентном выражении от измеренного значения.
При показаниях по шкале Iи = 10 А, погрешность прибора не должна превышать
Δх =10×2.5/100=0.25
При показаниях по шкале Iи=2 А погрешность будет иной:
Δх =2×2.5/100=0.05
При показаниях по шкале Iи=25 А погрешность будет максимальной:
Δх =25×2.5/100=0.625
Вот почему важно, чтобы аналоговый прибор работал при измерениях в 2/3 рабочей шкалы
Пределы
Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.
Базовый способ определения погрешности
При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.
Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.
Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.
Класс точности 2,5
Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.
Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.
Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.
Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.
Пример расчета погрешности
Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.
Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.
Определение погрешности
Владельцев измерительных приборов интересует, прежде всего, величина максимальной погрешности, характерной для манометра. Она зависит не только от класса точности, но и от диапазона измерений. Таким образом, чтобы получить значение погрешности, нужно произвести некоторые вычисления. Например, для манометра с диапазоном измерений, равным 6 МПа, и классом точности 1,5 погрешность будет рассчитываться по формуле 6*1,5/100=0,09 МПа.
Необходимо отметить, что таким способом можно посчитать только основную погрешность. Ее величина определяется идеальными условиями эксплуатации. На нее оказывают влияние только конструктивные характеристики, а также особенности сборки прибора, например, точность градуировки делений на шкале, сила трения в измерительном механизме. Однако эта величина может отличаться от фактической, поскольку существует также дополнительная погрешность, определяемая условиями, в которых эксплуатируется манометр. На нее может влиять вибрация трубопровода или оборудования, температура, уровень влажности и другие параметры.
Также точность измерения давления зависит от еще одной характеристики манометра — величины его вариации, которую определяют в ходе поверки. Это максимальная разница показаний измерителя, выявленная по результатам нескольких измерений. Величина вариации в значительной мере зависит от конструкции манометра, а именно от способа уравновешивания, которое может быть жидкостным (давлением столба жидкости) или механическим (пружиной). Механические манометры имеют более выраженную вариацию, что часто обусловлено дополнительным трением при плохой смазке или износе деталей, потере упругости пружины и другими факторами.
Какие классы точности бывают, как обозначаются
Как мы уже успели выяснить, интервал погрешности определяется классом точности. Данная величина рассчитывается, устанавливается ГОСТом и техническими условиями. В зависимости от заданной погрешность, бывает: абсолютная, приведенная, относительная, см. таблицу ниже
Согласно ГОСТ 8.401-80 в системе СИ классы точности обычно помечается латинской буквой, часто с добавлением индекса, отмеченного цифрой. Чем меньше погрешность, соответственно, меньше цифра и буквенное значение выше по алфавиту, тем более высокая точность.
Приборы, способные выполнять множество различных замеров, могут быть одновременно более двух классов.
Класс точности обозначается на корпусе устройства в виде числа обведенного в кружок, обозначает диапазон погрешностей измерений в процентах. Например, цифра ② означает относительную погрешность ±2%. Если рядом со знаком присутствует значок в виде галочки, это значит, что длина шкалы используется в качестве вспомогательного определения погрешности.
- 0,1, 0,2 – считается самым высоким классом
- 0,5, 1 – чаще применяется для устройств средней ценовой категории, например, бытовых
- 1,5, 2,5 – используется для приборов измерения с низкой точностью или индикаторов, аналоговых датчиков
Примечание. На корпусе высокоточных измерителей, класс может не наносится. Обозначение таких устройств как правило выполняется особыми знаками.
Виды маркирования
Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.
Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.
Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.
Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.
Описание
Приборы представляют собой щитовые приборы магнитоэлектрической системы с креплением подвижной части на кернах, с равномерной шкалой, с нулевой отметкой на краю или внутри диапазона измерений.
Принцип действия приборов основан на взаимодействии магнитного поля постоянного магнита с электрическим током, проходящим по обмотке рамки.
Конструктивно приборы выполнены в малогабаритных пластмассовых корпусах, защищающих измерительный механизм от загрязнений, повреждений, попадания пыли и брызг.
Приборы изготавливаются для эксплуатации в условиях умеренного, тропического климата, а так же для эксплуатации на морских судах. Приборы М42300.8, М42301.8, М4272.8, М4276.8 изготавливаются только для эксплуатации в условиях умеренного климата.
По согласованию с потребителем приборы М42300, М42301 могут быть изготовлены в специальном исполнении и предназначены для работы в условиях с повышенными механическими характеристиками эксплуатации.
Приборы М4272, М4276 могут изготавливаться со сменными шкалами с обозначением (с).
Приборы М42301 могут изготавливаться в исполнении с возможностью подсветки шкалы с обозначением (п) и чистой шкалой.
Приборы относятся к невосстанавливаемым, одноканальным, однофункциональным изделиям.
Фотография общего вида приборов представлена на рисунке 1.
Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки представлены на рисунке 2.
а) общий вид прибора с нулевой отметкой шкалы внутри диапазона измерений
б) общий вид прибора с нулевой отметкой шкалы на краю диапазона измерений
Обозначение на рисунке приборов:
1 — клеймо ОТК (место клеймения заполняется мастикой),
2 — поверительное клеймо (место клеймения заполняется мастикой).
3 — дата выпуска (краска штемпельная).
а) Схема пломбировки и клеймения микроамперметров, миллиамперметров, амперметров и вольтметров М42300, М42301
Обозначение на рисунке приборов:
1 — клеймо ОТК (место клеймения заполняется мастикой),
2 — поверительное клеймо (место клеймения заполняется мастикой),
3 — дата выпуска (краска штемпельная).
б) Схема пломбировки и клеймения микроамперметров, амперметров и вольтметров М42303
Обозначение на рисунке приборов:
1 — клеймо ОТК (место клеймения заполняется мастикой),
2 — поверительное клеймо (место клеймения заполняется мастикой).
3 — дата выпуска (краска штемпельная).
в) Схема пломбировки и клеймения миллиамперметров, амперметров и вольтметров М4264М
Обозначение на рисунке приборов:
1 — клеймо ОТК (место клеймения заполняется мастикой),
2 — поверительное клеймо (место клеймения заполняется мастикой),
3 — дата выпуска (краска штемпельная).
г) Схема пломбировки и клеймения миллиамперметров, амперметров и вольтметров М4272, М4276
Обозначение на рисунке приборов:
1 — клеймо ОТК (место клеймения заполняется мастикой),
2 поверительное клеймо (место клеймения заполняется мастикой),
3 — дата выпуска (краска штемпельная).
д) Схема пломбировки и клеймения миллиамперметров, амперметров и вольтметров М4278
Обозначение на рисунке приборов:
1 — клеймо ОТК (место клеймения заполняется мастикой),
2 — поверительное клеймо (место клеймения заполняется мастикой),
3 — дата выпуска (краска штемпельная).
е) Схема пломбировки и клеймения миллиамперметров, амперметров и вольтметров М42607, М42608
п.З
( | |
Y «Г- г’
/\\ L. |
iv __1J А |
п.1 У V п.2
Обозначение на рисунке приборов:
1 — клеймо ОТК (место клейметтия заполняется мастикой),
2 — поверительное клеймо (место клеймения заполняется мастикой),
3 — дата выпуска (краска штемпельная).
ж) Схема пломбировки и клеймения миллиамперметров, амперметров и вольтметров М42609
Рисунок 2 — Схема пломбировки от несанкционированного доступа, обозначение места
нанесения знака поверки.
Расчёт ошибок косвенных измерений
Пусть искомая
величина Апри выбранном
методе косвенных измерений рассчитывается
по формуле:
A
= f(x1
,x2
,x3
,…,xn
) (12)
где x1,x2,…,xn
— величины, найденные в результате прямых
измерений, с учётом ошибок о которых
шла речь выше. Из-за этих ошибок величина
«А»
так же будет определяться с ошибками.
Пусть X1,X2,…,XN
— значения f(x1
,x2
,x3
,…,xn), вычисленные
для разных серий измерений (x1,x2,…,xn).
Таблица 1
Таблица коэффициентов
Стьюдента
Число измерений |
Доверительная |
|||||
0.7 |
0.8 |
0.9 |
0.95 |
0.99 |
0.999 |
|
2 |
2.0 |
3.1 |
6.3 |
12.7 |
63.7 |
636.6 |
3 |
1.3 |
1.9 |
2.9 |
4.3 |
9.9 |
31.6 |
4 |
1.3 |
1.6 |
2.4 |
3.2 |
5.8 |
12.9 |
5 |
1.2 |
1.5 |
2.1 |
2.8 |
4.6 |
8.6 |
10 |
1.1 |
1.4 |
1.8 |
2.3 |
3.3 |
4.8 |
15 |
1.1 |
1.3 |
1.8 |
2.1 |
3.0 |
4.1 |
20 |
1.1 |
1.3 |
1.7 |
2.1 |
2.9 |
3.9 |
Абсолютной ошибкой
косвенных измерений, по аналогии с
абсолютной ошибкой прямых измерений,
называют разность между истинным
значением «А» и её значениями,
полученными в результате измерений:
(13)
Размерность
абсолютной ошибки совпадает с размерностью
определяемой величины. Относительной
ошибкой косвенных измерений называют
отвлечённое число:
(14)
Иногда относительную
ошибку выражают в процентах:
(15)
Для определения
величины «А» в формулах (12)…(15) по
теории
вероятностей
следует брать величину Х, которую можно
определить двумя способами:
1) А
= Х
= (Х1
+ Х2
+…+Хn)/n
(16)
2) A
= X
= f(x1
+ x2
+…+xn)
(17)
где x1,x2
,…, xn
определяют по формуле (3). Если ошибки
измерений малы, то оба способа дают
практически тождественные результаты.
Рассмотрим способы
нахождения ошибки величины А,
определённой из косвенных измерений,
по найденным значениям оши
бок прямых измерений.
Выше отмечалось, что возможны различные
соотношения между приборной систематической
и случайными ошибками.
1-й случай. Преобладают
приборные ошибки. В этом случае можно
дать только оценку максимальной ошибки.
Формулы для нахождения предельной
ошибки косвенных измерений по внешнему
виду совпадают с формулами дифференциального
исчисления. В связи с этим для предельной
абсолютной ошибки используется формула:
(18)
а для расчёта
предельной относительной ошибки пригодна
фор
— 19 —
мула:
(19)
Формулы для расчёта
предельных ошибок некоторых часто
встречающихся функций, когда приборные
ошибки превышают случайные, приведены
в Таблице 2. Эти выражения легко
рассчитываются по формулам (18) и (19).
2-й случай. Преобладают
случайные ошибки. Для определения
среднеквадратичной ошибки теория
вероятностей даёт следующую формулу:
(20)
Относительная
ошибка вычисляется по формуле:
(21)
При выполнении
промежуточных расчётов необходимо
помнить, что число точных цифр в результате
расчётов не может увеличиваться. Поэтому
промежуточные результаты округляют,
сохраняя
1…2 избыточных
знака. При этом последующие цифры,
меньшие
5,отбрасываются;если
первая из отбрасываемых цифр больше 5,
то последняя из
оставшихся цифр увеличивается на
единицу. Ес
ли первая
отбрасываемая цифра 5, то предыдущая
цифра остаётся
без изменений,
если она чётная, и увеличивается на
единицу, если
она нечётная.
Выражения для среднеквадратичной ошибки
некоторых часто встречающихся функций
приведены в Таблице 3. Для определения
ошибок косвенных измерений используют
большую из инструментальной или случайной
ошибок прямого измерения.
Как определить класс точности электроизмерительного прибора, формулы расчета
Чтобы определить класс точности, необходимо взглянуть на его корпус или инструкцию пользователя, в ней вы можете увидеть цифру, обведенную в круг, например, ① это означает, что ваш прибор измеряет величину с относительной погрешностью ±1%.
Но что делать если известна относительная погрешность и необходимо рассчитать класс точности, например, амперметра, вольтметра и т.д. Рассмотрим на примере амперметра: известна ∆x=базовая (абсолютная) погрешность 0,025 (см. в инструкции), количество делений х=12
Находим относительную погрешность:
Y= 100×0,025/12=0,208 или 2,08%
(вывод: класс точности – 2,5).
Следует отметить, что погрешность неравномерна на всем диапазоне шкалы, измеряя малую величину вы можете получить наибольшую неточность и с увеличением искомой величины она уменьшается, для примера рассмотрим следующий вариант:
Вольтметр с классом p=±2, верхний предел показаний прибора Xn=80В, число делений x=12
Предел абсолютной допустимой погрешности:
Относительная погрешность одного деления:
Если вам необходимо выполнить более подробный расчет, смотрите ГОСТ 8.401-80 п.3.2.6.
Виды погрешностей амперметра
Чтобы понять размер погрешности в измерениях, нужно сравнить полученные результаты с эталонными.
В метрологии используют для всех электротехнических измерителей, как для амперметров, так и для вольтметров, несколько видов погрешностей: абсолютную, относительную и приведенную.
Абсолютная погрешность амперметра — это разность Δ между результатом измерения, полученного на шкале прибора (Xи) и действительным значением силы тока в цепи (Xд). Абсолютная погрешность амперметра описывается простой формулой и выражается в единицах тока А.
Δх = Xд−Xи, А
где:
- Δх — дельта Х
- Xд — действительное показание силы тока, принимаемой по образцовому прибору;
- Xи — измеренное значение на шкале прибора.
Относительная погрешность (δ) — отношение абсолютной погрешности амперметра Δх к действительному показанию силы тока, принимаемому по образцовому прибору. Оно может быть указано как в процентах, тогда частное умножается на 100, либо выражаться в относительных единицах.
δ = (Δх : Xд)×100, %
Приведенная погрешность — это значение приведенное к диапазону измерения амперметра, приравненного к его шкале. Его получают в виде частного от абсолютной погрешности Δх и нормируемого значения (Xн), в значениях соответствующим абсолютной погрешности Δх умноженной на 100 %:
δпр = (Δх : Xн)×100, %
Класс точности
Во время лабораторных измерений требуется знать точность измерительных средств, которые в свою очередь обладают определенными характеристиками и различаются по устройству. Каждое из средств измерения (СИ) имеют определенные неточности, которые делится на основные и дополнительные. Зачастую возникают ситуации, когда нет возможности или просто не требуется производить подробный расчет. Каждому средству измерения присвоен определенный класс точности, зная который, можно выяснить его диапазон отклонений.
Вовремя выяснить ошибки измерительного средства помогут нормированные величины погрешностей. Под этим определением стоит понимать предельные, для измерительного средства показатели. Они могут быть разными по величине и зависеть от разных условий, но пренебрегать ими не стоит ни в коем случае, ведь это может привести к серьезной ошибке в дальнейшем. Нормированные значения должны быть меньше чем покажет прибор. Границы допустимых величин ошибок и необходимые коэффициенты вносятся в паспорт каждого замеряющего размеры устройства. Узнать подробные значения нормирования для любого прибора можно воспользовавшись соответствующим ГОСТом.
Какие классы точности бывают, как обозначаются
Как мы уже успели выяснить, интервал погрешности определяется классом точности. Данная величина рассчитывается, устанавливается ГОСТом и техническими условиями. В зависимости от заданной погрешность, бывает: абсолютная, приведенная, относительная, см. таблицу ниже
Согласно ГОСТ 8.401-80 в системе СИ классы точности обычно помечается латинской буквой, часто с добавлением индекса, отмеченного цифрой. Чем меньше погрешность, соответственно, меньше цифра и буквенное значение выше по алфавиту, тем более высокая точность.
Приборы, способные выполнять множество различных замеров, могут быть одновременно более двух классов.
Класс точности обозначается на корпусе устройства в виде числа обведенного в кружок, обозначает диапазон погрешностей измерений в процентах. Например, цифра ② означает относительную погрешность ±2%. Если рядом со знаком присутствует значок в виде галочки, это значит, что длина шкалы используется в качестве вспомогательного определения погрешности.
- 0,1, 0,2 – считается самым высоким классом
- 0,5, 1 – чаще применяется для устройств средней ценовой категории, например, бытовых
- 1,5, 2,5 – используется для приборов измерения с низкой точностью или индикаторов, аналоговых датчиков
Примечание. На корпусе высокоточных измерителей, класс может не наносится. Обозначение таких устройств как правило выполняется особыми знаками.