Калькулятор трансмиссии по передаточным числам

Содержание:

Калькулятор кпп и главной пары: расчет максимальной скорости движения автомобиля по передаточным числам

Привет друзья! Более года ничего не писал в свой блог, но сегодня что-то пошло не так … Не туда забрел, не там почитал, и пришло вдохновение, желание двигаться вперед.

Это будет не информационный пост как обычно, а некий мануал, калькулятор, который в зависимости от заданных типоразмеров шин, оборотов мотора и указанных передаточных чисел коробки рассчитает, какая будет скорость движения у автомобиля на передачи.

Конечно, калькулятор скорости автомобиля по передаточным числам и шинам производит расчет в идеальных (лабораторных) условиях. В реальных же условиях на конечную скорость автомобиля влияет очень много факторов, начиная от климатических условий и состояния дорожного полотна, и заканчивая настройкой мотора. Другими словами, калькулятор показывает потенциал коробки передач, до какой максимальной скорости она способна разогнать автомобиль.

Прогноз максимальной скорости движения авто на передаче:

1я передача: 23.68 км/ч 24.43 км/ч
2я передача: 36.34 км/ч 41.52 км/ч
3я передача: 52.47 км/ч 58.01 км/ч
4я передача: 69.1 км/ч 73.3 км/ч
5я передача: 90.21 км/ч 93.04 км/ч
6я передача: нет км/ч нет км/ч

*Для сликов маркированных в дюймах вводите только R колеса (вводить ширину и профиль не надо).

По умолчанию в калькуляторе расчета передаточных чисел КПП указаны характеристики коробок S4C (КПП #1) и S9B (КПП #2). Выбрал эти коробки не случайно, т.к. первая устанавливалась на Civic EK9, а вторая считается самой длинной МКПП для Б-моторов.

Размеры шин, количество оборотов двигателя, передаточные числа КПП и главную пару Вы можете подставлять на свое усмотрение. Калькулятором представляет собой универсальное средство, поэтому не стоит зацикливаться, что он работает только на КПП предназначенных для Хонды. Коробку ВАЗ’ика он тоже рассчитает без проблем

Внимание ! Калькулятор КПП и максимальной скорости движения автомобиля предоставлен исключительно в ознакомительных целях и не гарантирует 100% достоверных данных!

На форуме есть несколько тем, посвященных Honda коробкам, из которых Вы можете узнать передаточные числа для калькулятора. Информация еще не полная, но со временем, усилиями сообщества обновим топики и сделаем полную подборку характеристик:

— КПП и передаточные числа для моторов B серии;- КПП и передаточные числа для моторов K серии;- КПП и передаточные числа для моторов H серии;- КПП и передаточные числа для моторов F серии.-

В завершении поста, хочу заметить, что при установке на автомобиль дисков большего диаметра или шин отличных от стокового типоразмера, спидометр будет выдавать не совсем корректные данные. Единицы отдают его на калибровку, чтобы снимать точные показания, в 99.999% случаев автовладельцы оставляют все как есть. Чтобы узнать, насколько спидометр «обманывает» Вас, в блоге есть еще один полезный инструмент:

— Калькулятор погрешности спидометра.

Спасибо за внимание и отдельный респект всем тем, кто поделился ссылкой на пост

Продолжение следует …

P.S. По давней традиции, не забывайте подписываться на обновления проекта и нашего паблика ВКонтакте, рассказывать друзьям о проекте, делиться в сети ссылками на интересные посты, оставлять развернутые комментарии по теме, делать ретвиты, ставить лайки, нажимать на «мне нравится», добавлять посты в гугл плюс и … И конечно же, САМОЕ-САМОЕ ГЛАВНОЕ — приглашаю всех на форум любителей хонда !!! С момента последнего поста много чего изменилось и форум тоже. Жду всех на форуме

Тип редуктора

Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:

Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).

Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.

Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.

Цилиндрический соосный под любым углом. Оси валов располагаются в одной плоскости.

В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.

ВАЖНО! Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений

  • Конструкция червячных редукторов позволяет использовать их при любом положении выходного вала.
  • Применение цилиндрических и конических моделей чаще возможно в горизонтальной плоскости. При одинаковых с червячными редукторами массо-габаритных характеристиках эксплуатация цилиндрических агрегатов экономически целесообразней за счет увеличения передаваемой нагрузки в 1,5-2 раза и высокого КПД.

Таблица 1. Классификация редукторов по числу ступеней и типу передачи

Тип редуктора Число ступеней Тип передачи Расположение осей
Цилиндрический 1 Одна или несколько цилиндрических Параллельное
2 Параллельное/соосное
3
4 Параллельное
Конический 1 Коническая Пересекающееся
Коническо-цилиндрический 2 Коническая Цилиндрическая (одна или несколько) Пересекающееся/скрещивающееся
3
4
Червячный 1 Червячная (одна или две) Скрещивающееся
1 Параллельное
Цилиндрическо-червячный или червячно-цилиндрический 2 Цилиндрическая (одна или две) Червячная (одна) Скрещивающееся
3
Планетарный 1 Два центральных зубчатых колеса и сателлиты (для каждой ступени) Соосное
2
3
Цилиндрическо-планетарный 2 Цилиндрическая (одна или несколько) Планетарная (одна или несколько) Параллельное/соосное
3
4
Коническо-планетарный 2 Коническая (одна) Планетарная (одна или несколько) Пересекающееся
3
4
Червячно-планетарный 2 Червячная (одна) Планетарная (одна или несколько) Скрещивающееся
3
4
Волновой 1 Волновая (одна) Соосное

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

Способ расчета передаточного числа позволяет спроектировать редуктор с заранее заданными выходными значениями количества оборотов и теоретически найти передаточное отношение.

Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

КПД зубчатой передачи

Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

  • трение соприкасаемых поверхностей;
  • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
  • потери на шпонках и шлицах;
  • трение в подшипниках.

Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

u12 = ± Z2/Zи u21 = ± Z1/Z2,

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

u16 = u12×u23×u45×u56 = z2/z1×z3/z2×z5/z4×z6/z5 = z3/z1×z6/z4

Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

КПД зубчатой передачи

Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

  • трение соприкасаемых поверхностей;
  • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
  • потери на шпонках и шлицах;
  • трение в подшипниках.

Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы  узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.

Выбираем тип редуктора

Для того, чтобы определиться с типом редуктора, нужно рассмотреть пространственное расположение всех механизмов, которые присоединяются к редуктору, их места креплений и способы монтажа.

  1. Цилиндрические редукторы:
  2. У вертикального цилиндрического типа оси редуктора должны располагаться в одной вертикальной плоскости;
  3. Планетарный или соосный цилиндрический тип используется в том случае, если оси валов находятся в разных плоскостях, но при этом расположены на одной прямой.
  4. Коническо-цилиндрические редукторы применяются только для тех схем, где оси валов находятся в одной плоскости (горизонтальной) и перпендикулярны друг другу.
  5. Червячные редукторы:
  6. У двухступенчатого червячного редуктора оси валов пересекаются под прямым углом или параллельны друг другу, но при этом обязательно лежат в разных плоскостях.

Более того, в зависимости от области применения редуктора могут оказать влияние такие факторы, как:

  • Громкость работы (самый «тихий» — червячный редуктор);
  • КПД или коэффициент полезного действия (самые эффективные в плане работы считаются планетарные редукторы, в то время как у двухступенчатых червячных редукторов КПД самый низкий);
  • Стоимость в относительном эквиваленте (планетарные редукторы считаются самыми недорогими).

Также, производя расчет червячного редуктора, следует учитывать тот факт, что его использование в большей мере оправдано при повторяющихся кратковременных режимах эксплуатации.

Как изготовить своими руками?

Существуют различные варианты схем регулировки. Приведём один из них более подробно.

Вот схема его работы:

Первоначально, это устройство было разработана для регулировки коллекторного двигателя на электротранспорте. Речь шла о таком, где напряжение питания составляет 24 В, но эта конструкция применима и для других двигателей.

Слабым местом схемы, которое было определено при испытаниях её работы, является плохая пригодность при очень больших значениях силы тока. Это связано с некоторым замедлением работы транзисторных элементов схемы.

Рекомендуется, чтобы ток составлял не более 70 А. В этой схеме нет защиты по току и по температуре, поэтому рекомендуется встроить амперметр и контролировать силу тока визуально. Частота коммутации составит 5 кГц, она определяется конденсатором C2 ёмкостью 20 нф.

При этом, рекомендуется подобрать величину R1 таким образом, чтобы правильно настроить работу регулятора. С выхода микросхемы, управляющий импульс поступает на двухтактный усилитель на транзисторах КТ815 и КТ816, далее идёт уже на транзисторы.

Печатная плата имеет размер 50 на 50 мм и изготавливается из одностороннего стеклотекстолита:

На этой схеме дополнительно указаны 2 резистора по 45 ом. Это сделано для возможного подключения обычного компьютерного вентилятора для охлаждения прибора. При использовании в качестве нагрузки электродвигателя, необходимо схему заблокировать блокирующим (демпферным) диодом, который по своим характеристикам соответствует удвоенному значению тока нагрузки и удвоенному значению питающего напряжения.

Работа устройства при отсутствии такого диода может привести к поломке вследствие возможного перегрева. При этом, диод нужно будет поместить на теплоотвод. Для этого, можно воспользоваться металлической пластиной, которая имеет площадь 30 см2.

Регулирующие ключи работают так, что потери мощности на них достаточно малы. В оригинальной схеме, был использован стандартный компьютерный вентилятор. Для его подключения использовалось ограничительное сопротивление 100 Ом и напряжение питания 24 В.

Собранное устройство выглядит следующим образом:

При изготовлении силового блока (на нижнем рисунке), провода должны быть присоединены таким образом, чтобы было минимум изгибов тех проводников по которым проходят большие токи.Мы видим, что изготовление такого прибора требует определённых профессиональных знаний и навыков. Возможно, в некоторых случаях имеет смысл воспользоваться покупным устройством.

Онлайн расчеты :: SS20 Sport Club

Исходные данные

3.53.73.94.14.34.54.74.95.1

2.92 (5-й ряд)2.92 (6-й ряд) 2.92 (7-й ряд)3.42 (8-й ряд)3.42 (10-й ряд)3.63 (станд.)3.63 (11-й ряд)3.16 (12-й ряд)3.17 (15-й ряд)3.17 (18-й ряд)3.17 (20-й ряд)3.17 (102-й ряд)2.92 (103-й ряд)2.92 (104-й ряд)2.92 (200-й ряд)3.0 (026-й ряд)3.0 (711-й ряд)2.67 (745-й ряд)2.67 (74-й ряд)

1.81 (5-й ряд)1.81 (6-й ряд)2.05 (7-й ряд)2.05 (8-й ряд)2.05 (10-й ряд)2.22 (11-й ряд)1.95 (станд.)1.95 (12-й ряд)1.81 (15-й ряд)2.11 (18-й ряд)1.9 (20-й ряд)1.95 (102-й ряд)1.95 (103-й ряд)1.95 (104-й ряд)2.22 (200-й ряд)2.53 (026-й ряд) 2.53 (711-й ряд) 1.93 (745-й ряд)1.93 (74-й ряд)

1.28 (5-й ряд)1.28 (6-й ряд)1.56 (7-й ряд)1.36 (станд.)1.36 (8-й ряд)1.36 (10-й ряд)1.54 (11-й ряд)1.36 (12-й ряд)1.28 (15-й ряд)1.48 (18-й ряд)1.26 (20-й ряд)1.36 (102-й ряд)1.36 (103-й ряд)1.36 (104-й ряд)1.76 (200-й ряд)2.06 (026-й ряд)2.06 (711-й ряд)2.06 (45-й ряд)1.56 (74-й ряд)

0.94 (станд.)0.97 (5-й ряд)1.06 (6-й ряд)1.31 (7-й ряд)0.97 (8-й ряд)0.97 (10-й ряд)1.17 (11-й ряд)1.03 (12-й ряд)0.94 (15-й ряд)1.13 (18-й ряд)0.94 (20-й ряд)0.94 (102-й ряд)0.94 (103-й ряд)1.03 (104-й ряд)1.39 (200-й ряд)1.74 (026-й ряд)1.74 (711-й ряд)1.37 (745-й ряд)1.37 (74-й ряд)

0.78 (станд.)0.78 (5-й ряд)0.94 (6-й ряд)1.13 (7-й ряд)0.78 (8-й ряд)0.78 (10-й ряд)0.89 (11-й ряд)0.78 (12-й ряд)0.73 (15-й ряд)0.89 (18-й ряд)0.73 (20-й ряд)0.73 (102-й ряд)0.69 (103-й ряд)0.73 (104-й ряд)1.17 (200-й ряд)1.48 (026-й ряд)1.48 (711-й ряд)1.2 (745-й ряд)0.79 (74-й ряд)

нет0.69 (станд.)0.94 (7-й ряд)0.78 (18-й ряд)0.94 (200-й ряд)

Рассчитать

Передаточное число [I]

Передаточное число редуктора рассчитывается по формуле:

I = N1/N2

где N1 – скорость вращения вала (количество об/мин) на входе; N2 – скорость вращения вала (количество об/мин) на выходе.

Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.

Таблица 2. Диапазон передаточных чисел для разных типов редукторов

Тип редуктора Передаточные числа
Червячный одноступенчатый 8-80
Червячный двухступенчатый 25-10000
Цилиндрический одноступенчатый 2-6,3
Цилиндрический двухступенчатый 8-50
Цилиндрический трехступенчатый 31,5-200
Коническо-цилиндрический одноступенчатый 6,3-28
Коническо-цилиндрический двухступенчатый 28-180

ВАЖНО! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин

Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.

Признаки неполадок редуктора

Задний редуктор относится к надёжным механизмам классических «Жигулей» и поломки с ним случаются нечасто. Однако, как и у любого другого агрегата, у него могут быть свои неисправности, которые определяются по характерным признакам. На них стоит остановиться более подробно.

Шум при ускорении

Если во время разгона наблюдается посторонний звук из места установки редуктора, то к его возникновению могут привести:

  • выработка или неверная регулировка подшипников дифференциала. Потребуется демонтаж, разборка и диагностика деталей с последующей регулировкой;
  • неправильное зацепление зубьев шестерён главной пары. Устраняется правильной регулировкой;
  • недостаток смазки в редукторе. Нехватка масла в картере восстанавливается, после чего проверяется, нет ли подтекания в местах установки уплотнительных элементов.

Шум при ускорении и торможении мотором

При проявлении шума как во время разгона, так и при торможении силовым агрегатом, причин может быть не так уж много:

  • выработка либо поломка подшипников конической шестерни главной пары. Устраняется путём замены вышедших из строя элементов;
  • неправильная регулировка зазора между коничкой и планетаркой. Механизм нуждается в диагностике и замене повреждённых деталей, а также в установке требуемого зазора между зубьями шестерён.

Видео: как определить источник шума в заднем мосту

Стук, хруст при движении

Если редуктор начал издавать нехарактерные для его нормальной работы звуки, то точно диагностировать поломку можно будет только после разборки узла. Наиболее вероятными причинами появления хруста либо стука могут быть:

  • поломка зуба на шестернях главной пары;
  • большой износ главной пары;
  • неполадки либо неправильная регулировка подшипников конической шестерни.

Шумы при повороте

Шумы в редукторе также возможны при повороте автомобиля. Основными причинами такого явления могут быть:

  • тугое вращение сателлитов либо появление на их поверхности задиров. Устраняется заменой повреждённых деталей либо обработкой шероховатостей наждачной бумагой. Если дефект удалить не получается, вышедшие из строя детали подлежат замене;
  • заедание полуосевых шестерён. Если шестерни имеют едва заметные повреждения, производят их зачистку наждачной бумагой. Элементы со следами большого износа заменяют новыми;
  • неверно выставлен зазор между шестернями дифференциала. Необходимо установить правильный зазор между шестернями;
  • неисправность полуосевых подшипников. Шарикоподшипники нужно заменить на новые.

Стук в начале движения

Появлению стука в заднем редукторе ВАЗ 2106 в начале движения могут сопутствовать:

  • большой зазор между шлицами вала конической шестерни и фланца. Необходимо осмотреть состояние обеих деталей. При обнаружении значительной выработки на шлицах, элементы подвергают замене;
  • увеличенный зазор между зубьями шестерён главной пары. Проблема «лечится» регулировкой зазора;
  • большая выработка посадочного места под ось сателлитов в коробке дифференциала. Коробка нуждается в замене;
  • ослаб крепёж реактивных тяг задней балки. Необходимо осмотреть и подтянуть крепление.

Заклинило редуктор

Иногда РЗМ может заклинить, т. е. крутящий момент на ведущие колёса передаваться не будет. Причины, которые могут привести к такой неисправности, сводятся к следующему:

  • отсутствие смазки в механизме, которая могла вытечь по причине негерметичности узла;
  • поломка сателлитов;
  • повреждение подшипника на конической шестерне главной пары.

Отсутствие смазки в редукторе приводит к повышенной выработке и заклиниванию механизма

Подтекание масла можно определить не прибегая к разборке редуктора, но выявить остальные неисправности без этой процедуры не удастся. Если после разборки на шестернях будут обнаружены задиры, поломанные зубья либо видимые повреждения подшипника, то детали нуждаются замене.

Течь масла

Утечка смазки из редуктора «шестёрки» возможна по двум причинам:

  • выход из строя сальника хвостовика;
  • повреждение прокладки между редуктором и чулком заднего моста.

Чтобы точно определить, откуда подтекает масло, необходимо вытереть смазку ветошью и через некоторое время осмотреть редуктор: место утечки будет заметно. После этого можно будет предпринимать дальнейшие действия — снимать полностью редуктор для замены прокладки либо демонтировать только кардан и фланец для замены манжетного уплотнения.

О появлении течи масла свидетельствует мокрый редуктор в нижней части

История

Ремённая передача – одна из древнейших и простых механических передач, в которой используются приводные ремни и специальные колеса — шкивы. По некоторым источникам, ременная передача впервые документально описана китайским философом, поэтом и политиком Ян Сюном (53 год до н. э. – 18 год н. э.) периода империи Хань в тексте «Словарь местных выражений». Описанное устройство использовали ткачи в своей работе с шелком.

Кстати, слово «ремённая» записывается через букву «ё», на которую и нужно ставить ударение. Но в печати, например, в нашем следующем заголовке, точки над «ё» могут опускать. Это не является ошибкой, но не забудьте ставить ударение правильно.

На средневековых картинах можно увидеть механизм — самопрялку, в которой принцип ремённой передачи используется для ускорения получения пряжи. Большое развитие ремённая передача вместе с другими механизмами получила во времена английской промышленной революции (1780-1830 гг.), которая началась с изобретения в 1769 году паровой машины. Небольшие кустарные ремесленные производства начали вытесняться фабричным трудом с большим количеством машин.

Рис. 1. Слева. Фрагмент из «Декреталий Григория IX». Примерно 1340 год. Справа. Мартен ван Хемскерк. Портрет женщины с прялкой. 1529 годРис. 2. Типография в 1870 году

На приведенной ниже картинке показаны примеры использования ремённой передачи в современных технических устройствах – от двигателя внутреннего сгорания автомобиля до 3D-принтера.

Рис. 3. Примеры использования ремённых передач. А – ремень ГРМ на электрогенераторе двигателя автомобиля. Б – механизм кассетного магнитофона. В – зубчатый ремень 3D -принтера. Г – ремень вместо цепи на велосипеде. Д – ремённая передача на роторной косилке мотоблока

Сообщений 1 страница 12 из 12

Поделиться114 января, 2011г. 23:27:56

Ссылка: https://4×4.lviv.ua/?calculator=tuning Модераторы поправьте пожалуйста если не правильно вставил ссылку,просто не понял как это сделать .Спасибо.

Поделиться215 января, 2011г. 09:20:50

Миха150 Спасибо , ссылка хорошая, есть одно но – не подойдет для трактора с приводом только на задние колеса (или только на передние).

Поделиться315 января, 2011г. 09:55:04

Тоже скачал и посмотрел. Не силен я в програмировании, но думаю можно изменить параметры и сделать для одного моста. Или связаться с авторами, дабы сами они сменили, чтобы не-было нарушений

Поделиться415 января, 2011г. 20:29:56

Все подходит я на нем считал полный привод.Очень удобно особенно полноприводный с разными диаметрами колес,в левую колонку забиваеш данные по размерам резины и методом подбора передаточные ГП.Пример:в правую колонку резина в мм 20575R16 и значение ГП УАЗ 5.125 в левую 16580R12 подбираем ГП переднего моста из стандартных ВАЗ у меня получилось 4.1 при этом в графе скорость до и после тюнинга получил одинаковые значения.Так же удобно подбирать скорость . в бщем там все понятно не удобно одно т.к в большинстве случаев приходится ставить 2кпп передаточные числа приходится суммировать на калькуляторе или при помощи карандаша и бумаги,но это кому как нравится.

Отредактировано Миха150 (15 января, 2011г. 20:39:32)

Что в итоге

Как видно, передаточное число коробки передач оказывает серьезное влияние на динамические показатели и характеристики автомобиля. В рамках проектирования КПП инженеры отдельно учитывают мощность мотора, целевое назначение автомобиля и т.д., поле чего подбираются передаточные числа для всего ряда передач.

Также бывает достаточно внести изменения только в трансмиссию, что уже само по себе дает заметные улучшения. В рамках тюнинга трансмиссии необходимо учитывать целесообразность тех или иных доработок, а также учитывать, в каких режимах будет эксплуатироваться конкретный автомобиль.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector