Рабочая модель самодельного реактивного двигателя своими руками

Содержание:

Устройство реактивного двигателя

Реактивный двигатель состоит из следующих основных элементов:

  • компрессор, который засасывает в двигатель поток воздуха;
  • камера внутреннего сгорания, где происходит смешивание топлива с воздухом, их горение;
  • турбина – придает дополнительное ускорение потоку тепловой энергии, полученной в результате горения топлива и воздуха;
  • сопло, важнейший элемент, который преобразует внутреннюю энергию в «движущую силу» – кинетическую энергию.

Благодаря совместному взаимодействию этих элементов, на выходе реактивного двигателя образуется мощнейшая реактивная струя, придающая объектам, на которых установлен двигатель, высочайшую скорость.

Преимущества реактивного двигателя

Перед остальными видами такие:

  • Простота конструкции. Для создания простейшего реактивного двигателя достаточно камеры сгорания и сопла. В камере сгорания образуется рабочее тело с высокой тепловой энергией, которое проходя через сопло передает аппарату реактивную тягу.
  • Малое количество подвижных деталей. Для повышения эффективности работы воздушно-реактивного двигателя, созданы дополнительные механизмы. Они обеспечивают принудительное нагнетание воздуха в камеру сгорания. Их конструкция проста. Обычно это воздухозаборник с крутящимся винтом и лопастями. У ракетного таковые отсутствуют вообще.
  • Высокие удельный импульс и мощность. Удельный импульс характеризует насколько большое ускорение передается самолёту или ракете рабочим телом, что позволяет развить хорошую скорость полета. Сравнение мощностей различных типов двигателей наглядно демонстрирует преимущества реактивного: карбюраторный ДВС – 200 кВт; дизельный ДВС – 2200 кВТ.; атомный – 55 000 кВт; турбинный паровой — 300 000 кВт; реактивный – 30 000 000 кВт.
  • КПД достигает 47-60%. Этот показатель гораздо выше, чем у двигателей внутреннего сгорания (25-35%) или турбинного (27-30%). Это значит, что реактивный совершает больше полезной работы.
  • Управляемость с помощью тяги во время космических полетов. Меняя расход топлива, можно уменьшать или увеличивать скорость полета, делать манёвры и вовсе отключать двигатель, а затем снова его запускать. При этом ему не требуется взаимодействовать с другими телами.
  • Работает при низком давлении воздуха или вовсе без него в условиях безвоздушного пространства. Пока ещё не создан механизм, который зарекомендовал себя лучше в условиях космоса.

Шаг 5: Привариваем торцевые кольца

Для начала нужно укоротить корпус до нужной длины и выровнять всё должным образом.

Начнём с того, что обмотаем большой лист ватмана вокруг стальной трубы так, чтобы концы сошлись друг с другом и бумага была сильно натянута. Из него сформируем цилиндр. Наденьте ватман на один конец трубы так, чтобы края трубы и цилиндра из ватмана заходили заподлицо. Убедитесь, что там будет достаточно места (чтобы сделать отметку вокруг трубы), так чтобы вы могли сточить металл заподлицо с отметкой. Это поможет выровнять один конец трубы.

Далее следует измерить точные размеры камеры сгорания и рассеивателя. С колец, которые будут приварены, обязательно вычтите 12 мм. Так как КС будет в длину 25 см, учитывать стоит 24,13 см. Поставьте отметку на трубе, и воспользуйтесь ватманом, чтобы изготовить хороший шаблон вокруг трубы, как делали раньше.

Отрежем лишнее с помощью болгарки. Не волнуйтесь о точности разреза. На самом деле, вы должны оставить немного материала и очистить его позже.

Сделаем скос с обеих концов трубы(чтобы получить хорошее качество сварного шва). Воспользуемся магнитными сварочными зажимами, чтобы отцентровать кольца на концах трубы и убедиться, что они находятся на одном уровне с трубой. Прихватите кольца с 4-х сторон, и дайте им остыть. Сделайте сварной шов, затем повторите операции с другой стороны. Не перегревайте металл, так вы сможете избежать деформации кольца.

Когда оба кольца приварены, обработайте швы. Это необязательно, но это сделает КС более эстетичной.

Шаг 5: Привариваем торцевые кольца

Для начала нужно укоротить корпус до нужной длины и выровнять всё должным образом.

Начнём с того, что обмотаем большой лист ватмана вокруг стальной трубы так, чтобы концы сошлись друг с другом и бумага была сильно натянута. Из него сформируем цилиндр. Наденьте ватман на один конец трубы так, чтобы края трубы и цилиндра из ватмана заходили заподлицо. Убедитесь, что там будет достаточно места (чтобы сделать отметку вокруг трубы), так чтобы вы могли сточить металл заподлицо с отметкой. Это поможет выровнять один конец трубы.

Далее следует измерить точные размеры камеры сгорания и рассеивателя. С колец, которые будут приварены, обязательно вычтите 12 мм. Так как КС будет в длину 25 см, учитывать стоит 24,13 см. Поставьте отметку на трубе, и воспользуйтесь ватманом, чтобы изготовить хороший шаблон вокруг трубы, как делали раньше.

Отрежем лишнее с помощью болгарки. Не волнуйтесь о точности разреза. На самом деле, вы должны оставить немного материала и очистить его позже.

Сделаем скос с обеих концов трубы(чтобы получить хорошее качество сварного шва). Воспользуемся магнитными сварочными зажимами, чтобы отцентровать кольца на концах трубы и убедиться, что они находятся на одном уровне с трубой. Прихватите кольца с 4-х сторон, и дайте им остыть.  Сделайте сварной шов, затем повторите операции с другой стороны. Не перегревайте металл, так вы сможете избежать деформации кольца.

Когда оба кольца приварены, обработайте швы. Это необязательно, но это сделает КС более эстетичной.

Устройство

Рабочее тело двигателя состоит из:

  • компрессора, служащего для сжатия воздуха;
  • камеры сгорания для нагревания;
  • турбины для расширения.

Охлаждающий эффект обеспечивается атмосферой.

В компрессоре имеются диски из металла, а на их венцах расположены лопатки, которые захватывают воздух снаружи и перемещают внутрь.

От компрессора воздух направляется в камеру сгорания, нагреваясь и смешиваясь с керосином, попадающим туда через ротор.

Далее действие переходит в турбину, где газ раскручивается подобно игрушке-пропеллеру. Обычно турбины имеют три-четыре ступени. Именно на этот механизм приходится наибольшая нагрузка. Турбореактивный двигатель вращается со скоростью до тридцати тысяч оборотов в минуту. Факел, выходящий из камеры сгорания, может иметь температуру до полутора тысяч градусов по Цельсию. Воздух, расширяясь здесь, начинает двигать турбину.

После этого в реактивном сопле рабочее тело достигает скорости большей, чем скорость встречного потока. Таким образом и получается реактивная тяга.

Ссылки

Смотреть что такое «Двухконтурный турбореактивный двигатель» в других словарях:

Двухконтурный турбореактивный двигатель — (см. Турбореактивный двухконтурный двигатель). Авиация: Энциклопедия. М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994 … Энциклопедия техники

Двухконтурный турбореактивный двигатель — (ДТРД) авиационный Воздушно реактивный двигатель, в котором поступающий в него воздух делится на два потока, проходящих через внутренние и внешние контуры. Первый ДТРД с эжектором предложен в 1887 киевским изобретателем Ф. Р. Гешвендом.… … Большая советская энциклопедия

двухконтурный турбореактивный двигатель — двухконтурный турбореактивный двигатель см. Турбореактивный двухконтурный двигатель … Энциклопедия «Авиация»

двухконтурный турбореактивный двигатель — двухконтурный турбореактивный двигатель см. Турбореактивный двухконтурный двигатель … Энциклопедия «Авиация»

двухконтурный турбореактивный двигатель — Авиационный газотурбинный двигатель, в котором тепло превращается в кинетическую энергию реактивной струи и в механическую работу на валу двигателя, причем механическая работа на валу двигателя используется для привода компрессора второго контура … Политехнический терминологический толковый словарь

Турбореактивный двигатель — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ ДВУХКОНТУРНЫЙ — создаёт тягу за счёт реакции выходящих из реактивного сопла газов, а также за счет поступаления части воздуха от компрессора низкого давления (вентилятора), что увеличивает общую массу воздуха, участвующего в создании силы тяги. Широкое… … Военная энциклопедия

ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ — (ТРД) турбокомпрессорный двигатель, в котором тяга создается прямой реакцией потока сжатых газов, вытекающих из сопла. Разновидность турбореактивных двигателей турбореактивный двухконтурный двигатель … Большой Энциклопедический словарь

турбореактивный двигатель — (ТРД), турбокомпрессорный двигатель, в котором тяга создаётся прямой реакцией потока сжатых газов, вытекающих из сопла. Разновидность турбореактивного двигателя турбореактивный двухконтурный двигатель. * * * ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ… … Энциклопедический словарь

ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ — (ТРД) компрессорный воздушно реактивный двигатель, в к ром работа газовой турбины затрачивается на привод компрессора, а потенц. энергия газов за турбиной обеспечивает создание реактивной тяги при их истечении из реактивного сопла (см. рис.). На… … Большой энциклопедический политехнический словарь

САМОДЕЛЬНЫЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ – ВИДЕО (ВАРИАНТ ПОПРОЩЕ)

СВОИМИ РУКАМИ. Ракетный двигатель из бумаги!

  • Шлифовальный станок своими руками Как сделать самодельный шлифовальный станок Недавно…
  • Электролобзик и шлифмашинка своими руками Как сделать шлифовальную машинку и…
  • Электролобзик своими руками из электроножа Электролобзик на скорую руку Наш постоянный…
  • Виброокучник для картофеля своими руками Как сделать виброокучник своими руками Рыхлить…
  • Мини-автомобиль своими руками – устройство Как я сделал мини-автомобиль Раму автомобиля…
  • Защита для трёхфазного двигателя своими руками (схема) Защита электродвигателя своими руками Трехфазный двигатель…
  • Сверлильный мини-станок своими руками Как сделать станок для сверления Для…

    Своими руками › Авто и мото › Реактивный двигатель из… БУМАГИ своими руками ( + чертеж)

Шаг 1: Прорабатываем базовую конструкцию двигателя

Начнём процесс сборки двигателя с 3Д моделирования. Изготовление деталей с помощью ЧПУ станка значительно облегчает процесс сборки и уменьшает количество часов, которые будут потрачены на подгонку деталей. Главное преимущество при использовании 3D процессов – это способность видеть, как детали будут взаимодействовать вместе до того момента, как они будут изготовлены.

Если вы хотите изготовить действующий двигатель, обязательно зарегистрируйтесь на форумах соответствующей тематики. Ведь компания единомышленников значительно ускорить процесс изготовления самоделки и значительно повысит шансы на удачный результат.

Турбореактивные двигатели

Такой тип двигателей был создан в первой половине 20-го века и начал находить себе массовое применение к концу Второй мировой войны. Первым в мире серийным турбореактивным самолетом был немецкий Me.262. ТРД были популярны вплоть до 60-ых годов, после чего их стали вытеснять ТРДД.

Современная фотография Me-262, сделанная в 2021 году Самый простой турбореактивный двигатель включает в себя следующие элементы:

  • Входное устройство
  • Компрессор
  • Камеру сгорания
  • Турбину
  • Реактивное сопло (далее просто сопло)

Можно сказать, что это минимальный набор для нормальной работы двигателя. А теперь рассмотрим что для чего нужно и зачем. Входное устройство — это расширяющийся* канал, в котором происходит подвод воздуха к компрессору и его предварительное сжатие. В нём кинетическая энергия входящего воздуха частично преобразуется в давление.

*здесь и дальше мы будем говорить про дозвуковые скорости. На сверхзвуковой скорости физика меняется, и там все совсем не так.

Компрессор — это устройство, в котором происходит повышение давление воздуха. Компрессор можно характеризовать такой величиной, как степень повышения давления. В современных двигателях оно уже начинает переступать за 40 единиц. Кроме того, в нем увеличивается температура (может быть, где-то до 400 градусов Цельсия).

Камера сгорания — устройство, в котором к сжатому воздуху (после компрессора) подводится тепло из-за горения топлива. Температура в камере сгорания очень высокая, может достигать 2000 градусов Цельсия. Вам может показаться, что давление газа в камере тоже сильно увеличивается, но это не так. Теоретически принято считать, что подвод тепла осуществляется при постоянном давлении. В реальности оно немного падает из-за потерь (проблема несовершенства конструкции).

Турбина — устройство, превращающее часть энергии газа после камеры сгорания в энергию привода компрессора. Так как турбины используются не только в авиации, можно дать более общее определение: это устройство, преобразующее внутреннюю энергию рабочего тела (в нашем случае рабочее тело — это газ) в механическую работу на валу. Как вы могли понять, турбина и компрессор находятся на одном валу и жестко связаны между собой. Если в компрессоре происходит повышение давления газа, то в турбине, наоборот, понижение, то есть газ расширяется.

Сопло — суживающийся канал, в котором происходит преобразование потенциальной энергии газа в кинетическую (оставшийся запас энергии газа после турбины). Как и в турбине, в сопле происходит расширение газа. Образуется струя, которая, вытекая из сопла, движет самолёт.

С основными элементами разобрались. Но все равно не очень понятно как оно работает? Тогда давайте ещё раз и коротко.

Воздух из атмосферы попадает во входное устройство, где немного сжимается и поступает в компрессор. В компрессоре давление воздуха растёт ещё сильнее, растёт и температура. После компрессора воздух поступает в камеру сгорания и, смешиваясь там с топливом, воспламеняется, что приводит к сильному возрастанию температуры, при, можно сказать, постоянном давлении. После камеры сгорания горячий сжатый газ попадает в турбину. Часть энергии газа расходуется на вращение компрессора турбиной (чтобы он мог выполнять свою функцию, описанную выше), другая часть энергии расходуется на, нужное нам, движение самолёта, из-за того, что газ, пройдя турбину, превращается в реактивную струю в сопле и вырывается из него (сопла) в атмосферу. На этом цикл завершается. Конечно, в реальности все процессы цикла проходят непрерывно.

Такой цикл называется циклом Брайтона, или термодинамическим циклом с непрерывным характером рабочего процесса и подводом тепла при постоянном давлении. По такому циклу работают все ГТД.

Цикл Брайтона в P-V координатах

Н-В — процесс сжатия во входном устройстве В-К — процесс сжатия в компрессоре К-Г — изобарический подвод тепла Г-Т — процесс расширения газа в турбине Г-С — процесс расширения газа в сопле С-Н — изобарический отвод тепла в атмосферу

Схематичная конструкция турбореактивного двигателя, где 0-0 — ось двигателя

ТРД может иметь и два вала. В таком случае компрессор состоит из компрессора низкого давления (КНД) и компрессора высокого давления (КВД), а подвод работы будут осуществлять турбина низкого давления (ТНД) и турбина высокого давления (ТВД) соответственно. Такая схема более выгодная газодинамически.

Реальный двигатель такого вида в разрезе

Мы рассмотрели принцип работы самой простой схемы авиационного газотурбинного двигателя. Естественно, на современных «Эйрбасах и Боингах» устанавливаются ТРДД, конструкция которых заметно сложнее, но работает все по таким же законам. Давайте рассмотрим их.

Что это такое

Двигатель стирлинга своими руками, схема и чертеж

Любой прибор, который работает за счёт какой-либо энергии, перестанет работать, если его отключить от источника этой самой энергии. Вечный двигатель решает эту проблему: включив его однажды можно не беспокоиться, что в нём сядет батарейка или закончится бензин, и он выключится. Идея создания такого устройства довольно долго будоражила умы людей, и попыток создания вечного двигателя было очень много.

Поскольку такая система должна работать вечно (или хотя бы очень долго), то к ней предъявляются особые требования:

  • Постоянная работа. Это логично, ведь если двигатель остановится, то не такой уж он и вечный.
  • Как можно более долговечные детали. Если наш двигатель должен работать вечно, то его отдельные детали должны быть максимально износостойкие.

Гравитационный двигатель

Ни для кого не секрет, что в нашей вселенной действуют гравитационные силы. Сейчас они находятся в покое, так как уравновешены друг другом. Но если нарушить равновесие, все эти силы придут в движение. Подобный принцип теоретически можно использовать в гравитационном вечном двигателе. Правда, осуществить это пока никому не удалось.

Магнитно-гравитационный двигатель

Здесь все немного проще, чем в предыдущем варианте. Для создания такого устройства нужны постоянные магниты и грузы определённых параметров. Работает это так: в центре вращающегося колеса находится основной магнит, а вокруг него (на краях колеса) расположены вспомогательные магниты и грузы. Магниты взаимодействуют друг с другом, а грузы находятся в движении и перемещаются то ближе к центру вращения, то дальше. Таким образом центр массы смещается, и колесо вращается.

Самый простой вариант

Для его создания понадобятся простые материалы:

  • Бутылка из пластика.
  • Тонкие трубки.
  • Куски дерева (доски).

Бутылку нужно разрезать на две части по горизонтали. В нижнюю часть вставить деревянную перегородку, в которой заранее проделать отверстие и придумать затычку для него. После берётся тонкая трубка и устанавливается таким образом, чтобы она проходила снизу вверх через перегородку. Любые зазоры в составных частях нужно уплотнить, предотвратив поступление воздуха в нижнюю часть бутылки.

Через отверстие в дереве нужно налить в нижнюю часть легкоиспаряющейся жидкости (бензин, фреон). При этом уровень жидкости не должен доставать не до дерева, а до среза трубки. Потом затычка закрывается, а сверху наливается немного той же жидкости. Теперь следует закрыть эту конструкцию верхней частью бутылки и поставить в тёплое место. Через время из верхней части трубки начнёт капать жидкость.

Водяной вариант вечного двигателя

Это довольно простая конструкция, которую можно построить даже в домашних условиях. Понадобится пара колб, клапаны для них, одна большая ёмкость с водой и несколько трубок. Ориентируясь по картинке, можно собрать такое устройство — оно будет перекачивать воду.

Эта тема очень интересна и увлекательна. Учёные всего света ломали голову над этим мифическим устройством. Было много шарлатанов, которые выдавали свои хитроумные машины за вечноработающие двигатели. На сегодняшний день никто не смог создать такое устройство. Многие учёные отрицают возможность существования такой машины, так как она нарушает фундаментальные законы физики.

Какие запчасти нужны для капитального ремонта двигателя

После проделывания процедуры дефектовки и отсеивания годных к восстановлению и не годных, надо заказать новые детали взамен негодным. Когда уже знаете, какие запчасти нужны, с их заказом и покупкой тянуть не надо, так как новые детали еще надо подготавливать к установке.

Запчасти для капремонта для бензиновых двигателей:

  1. Вкладыши (коренные и шатунные).
  2. Детали поршневой группы.
  3. Пальцы шатунов.
  4. Шатунные втулки.
  5. Клапана (все, и впускные, и выхлопные).
  6. Маслосъемные кольца.
  7. Прокладки (полный комплект).
  8. Направляющие втулки и седла клапанов.
  9. Помпа с ремкомплектом.
  10. Фильтр масляный и насос.
  11. Другие попутные детали.

Технические характеристики

Важным параметром, заставляющим авиамодели летать, является тяга. Она обеспечивает хорошую мощность, способную поднимать в воздух большие грузы. Тяга у старых и новых двигателей отличается, но у моделей, созданных по чертежам 1960-х годов, работающих на современном топливе, и модернизированных современными приспособлениями, КПД и мощность существенно возрастают.

В зависимости от типа РД, характеристики, как и принцип работы, могут отличаться, но всем им для запуска необходимо создать оптимальные условия. Запускаются двигатели при помощи стартера — других двигателей, преимущественно электрических, которые прикрепляются к валу двигателя перед входных диффузором, либо запуск происходит раскручиванием вала с помощью сжатого воздуха, подаваемого на крыльчатку.

двигателя GR-180

На примере данных из технического паспорта серийного турбореактивного двигателя GR-180 можно увидеть фактические характеристики рабочей модели: Тяга: 180N при 120 000 об/мин, 10N при 25 000 об/мин Диапазон оборотов: 25 000 — 120 000 об/мин Температура выхлопного газа: до 750 C° Скорость истечения реактивной струи: 1658 км/ч Расход топлива: 585мл/мин (при нагрузке), 120мл/мин (холостой ход) Масса: 1.2кг Диаметр: 107мм длина: 240мм

Самодельный шлагбаум какой выбрать

В основном ставятся такие механизмы в домах с большим количеством квартир, на стоянках для автомобилей, на загородных участках, на частных территориях, в которые не допускается проезд посторонних транспортных средств. Стоит выбрать, какой вариант защитного средства будет установлен. Шлагбаумы делятся на следующие категории:

Изготовление шлагбаума своими руками зависит от области его применения

Стоит также обратить внимание на принцип открывания: горизонтальный или вертикальный. Все зависит от типа участка и предпочтений владельца

Например, для того чтобы установить горизонтальный механизм открытия, необходимо дополнительное место, куда будет открываться шлагбаум. Этот вариант самый простой.

При ограниченном количестве места лучше всего установить вертикальную систему открытия. Механизм может быть откатным, наподобие откатных ворот, но такое устройство самое сложное и требует больших финансовых затрат и качественного материала.

Как устроен шлагбаум с поворотным механизмом

При постройке поворотного заграждения главное — правильный чертеж. Состоит такой шлагбаум из стрелы с поворотным механизмом и столба с возможностью крепления замка для закрытия защитного ограждения. Этот вариант самый простой в изготовлении; человеку, владеющему навыками работы с металлом, деревом и сварочным аппаратом, изготовить такую конструкцию несложно. Стоит учитывать, что, если нужно закрыть проезд, шириной примерно в 10 м, лучше всего поставить шлагбаум, состоящий из 2 стрел.

Шлагбаум с откатной системой

Такая система защиты представляет собой заграждение, которое перпендикулярно дороге откатывается в сторону при помощи нажатия кнопки, которая приводит в действие электроприводной механизм. Данная модель сложна для самостоятельного изготовления.

Особенности подъемной конструкции

Такая конструкция вписывается в места, где ограничено пространство для открытия шлагбаума. Затраты на такой вид заграждения невелики, а функционирует оно при любых погодных условиях, легко устанавливается и эксплуатируется.

Основные узлы ТВаД

Рис. 1. Схема турбовального ГТД:

  • 1- входное устройство; 2- компрессор; 3- камера сгорания; 4- турбина компрессора; 5- турбина винта (свободная турбина); 6- выходное устройство;
  • 7 — вал отбора мощности

На примере ТВаД рассмотрим характерные сечения газотурбинного двигателя:

«Н» сечение невозмущенного потока, в этом сечении параметры воздуха соответствуют атмосферным;

«Вх» сечение на входе во входное устройство двигателя;

«В» сечение на входе в компрессор двигателя;

«К» сечение на выходе из компрессора двигателя, вход в камеру сгорания;

«Г» сечение на выходе камеры сгорания двигателя, вход в турбину;

«ТК» сечение на выходе из турбины компрессора (перед свободной турбиной);

«Т» сечение на выходе из турбин двигателя, вход в выходное устройство;

«С» сечение на выходе из двигателя.

Буквы, обозначающие сечения двигателя, используются в качестве индекса при обозначении величин, характеризующих параметры газа. Например, СС — скорость истечения газа на выходе из двигателя, РК — давление газа за компрессором двигателя и.т. д.

Входное устройство.

Входное устройство предназначено для подвода к двигателю необходимого количества воздуха из атмосферы с минимальными гидравлическими потерями. Конструктивно выполнено как сужающийся канал, являющийся составной частью капотов. При движении воздуха во входном устройстве, как в любом сужающемся канале, происходит увеличение скорости, падение давления , снижение температуры .

Компрессор.

Компрессор предназначен для повышения давления воздуха. Компрессор конструктивно выполнен как лопаточная машина с вращающемся ротором. В компрессоре происходит повышение энергии воздуха за счет подводимой к его ротору механической энергии. Скорость потока в компрессоре несколько снижается. В компрессоре реализуется термодинамический процесс, приближенный к адиабатному. У вертолетных ТВаД обычно применяется осевой компрессор, т.е. воздух в компрессоре движется вдоль оси двигателя.

Камера сгорания.

Камера сгорания предназначена для подвода к воздуху тепла, в результате в камере сгорания происходит значительный рост температуры. При этом профиль проточной части камеры сгорания выбран таким, чтобы по мере продвижения газа происходило некоторое увеличение его скорости и снижение его давления. Термодинамический процесс в камере сгорания близок к изобарическому.

Турбина компрессора.

Турбина компрессора предназначена для привода во вращение ротора компрессора. Конструктивно выполнена как лопаточная машина, ротор которой с помощью вала связан с ротором компрессора и вращается заодно с ним. В турбине внутренняя энергия газа преобразуется в механическую т.е. и за счет этого вырабатывается механическая энергия, передаваемая через вал к ротору компрессора и расходуемая на его вращение.

Часть двигателя, включающая в себя компрессор, камеру сгорания, турбину компрессора, называется турбокомпрессором или газогенератором.

Свободная турбина.

Свободная турбина предназначена для выработки мощности, необходимой для передачи к главному редуктору вертолета. Процессы, происходящие в свободной турбине аналогичны тем, которые происходят в турбине компрессора.

Выходное устройство.

Выходное устройство двигателя (не регулируемое) представляет собой расширяющийся патрубок, обеспечивающий отвод отработанных газов в сторону от двигателя. В выходном устройстве двигателя ТВ2-117 газ, выходящий и свободной турбины активно смешивается с охлаждающим воздухом. В результате давление, температура и скорость газа снижаются.

Делаем модель самолета

Постройка схематических моделей самолета является сле­дующим шагом на пути авиамоделиста к мастерству. Эта модель сложнее в постройке, чем модель планера, но она обладает большими возможностями, так же как и самолет обладает несравненно большими возможностями, чем планер.

Схематическая модель самолета (рис. 120, 121) является более сложной по конструкции, чем схематичесжая модель планера (смотри — КАК СДЕЛАТЬ МОДЕЛЬ ПЛАНЕРА). О том, как сделать другие модели самолета с резиномотором см. здесь — ДРУГИЕ МОДЕЛИ САМОЛЕТОВ.

О том, как правильно выбрать модель самолета, читай здесь — ВЫБОР ОСНОВНЫХ ДАННЫХ МОДЕЛИ. О том, как работать с резиномотором, читай здесь — КАК РАБОТАТЬ С РЕЗИНОМОТОРОМ. О регулировке и запуске моделей, можно посмотреть вот тут — РЕГУЛИРОВКА И ЗАПУСК МОДЕЛЕЙ САМОЛЕТА и ПОЛЕТЫ САМОЛЕТА.

О теории полета, воздушных течениях, управлением самолета — НЕМНОГО ТЕОРИИ. ЧТО ТАКОЕ САМОЛЕТ? КАК ОН ЛЕТАЕТ?

У нее, кроме моторной рейки, крыла и хвостового оперения, имеется воздушный винт, который создает силу тяги, необходимую для полета модели, и резиномотор, приводящий винт во вращение. Для взлета с земли модель установлена на шасси, которое нужно также и для посадки модели.

Схематическая модель самолета, снабженная колесным шасси, легко взлетает с земли после небольшого разбега. Мо­дель можно установить на специальные поплавки, и тогда она сможет совершать взлет с водной поверхности. Модель может летать, набирая высоту, пока раскручивается резиномотор. После раскрутки резиномотора она переходит на планирующий полет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector