Пусковые режимы асинхронных электродвигателей
Содержание:
- Критерии выбора
- Расчет КПД электродвигателя
- Примеры номинальной мощности и мощности при запуске бытовой техники
- Расчет силы тока по мощности и напряжению онлайн
- Как определяется пусковой ток
- Пример определения тока самозапуска двигателей 6 кВ
- Пусковой ток электродвигателя
- Климатические исполнения электродвигателей
- Расчет тока электродвигателя
- Чем отличается контактор от пускателя?
- Конструктивные особенности
- Iн = Pн/(√3Uн х сosφ), кА
- Синхронные электродвигатели
- Как определить и проверить ток при запуске двигателя?
- Пусковой ток электродвигателя
- Практическое применение
- Типы двигателей
- Расчет тока электродвигателя
- Расчет коэффициента мощности электродвигателя
- Выводы:
Критерии выбора
При выборе необходимого электрического аппарата рассматриваются его технические характеристики и конструктивные особенности. Остановимся на главных из них.
Номинальное напряжение коммутируемой цепи. Наиболее часто магнитные пускатели применяются для запуска асинхронных двигателей с короткозамкнутым ротором на промышленное напряжение 220/380 Вольт. Именно на такой выбор рассчитано большинство выпускаемых моделей коммутационных аппаратов. При использовании аппаратов для электродвигателей на 380/660 Вольт, встречающихся значительно реже, необходимо выбрать пускатель соответствующего напряжения.
Номинальный ток основных контактов. Сопоставление тока подключаемой нагрузки с номинальным током коммутационного аппарата – одно из первых действий при выборе последнего. Магнитные пускатели, выпускаемые в РФ по советским ГОСТам, например ПМЛ, условно классифицируются по величинам, соответствующим номинальному току аппарата. Ниже представлена таблица соотношений величин и номинальных токов. По ней можно правильно выбрать магнитный пускатель по току, либо по мощности, произведя пересчет по формуле.
Величина | O | I | II | III | IV | V | VI |
Iном | 6,3 А | 10 А | 25 А | 40 А | 63 А | 100 А | 160 А |
Продукты зарубежных производителей представлены широким выбором контакторов разнообразных вариантов исполнения на различные номинальные токи.
Расчет КПД электродвигателя
Онлайн расчет КПД (коэффициента полезного действия) электродвигателя
Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:
η=P/√3UIcosφ
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Электродвигатель – механизм, преобразующий энергию электрического тока в кинетическую энергию. Современное производство и быт сложно представить без машин с электроприводом. Они используются в насосном оборудовании, системах вентиляции и кондиционирования, в электротранспорте, промышленных станках различных типов и т.д.
При выборе электродвигателя необходимо руководствоваться несколькими основными критериями:
- вид электрического тока, питающего оборудование;
- мощность электродвигателя;
- режим работы;
- климатические условия и другие внешние факторы.
Примеры номинальной мощности и мощности при запуске бытовой техники
Тип техники | Номинальная мощность, Вт | Продолжительность пусковых токов, с | Коэффициент во время начала работы | Пример модели стабилизатора, ВА | Пример модели ИБП |
Холодильник | 4 | 3 | «Штиль» R1200 / Progress 1500T | N-Power Pro-Vision Black M 3000 LT | |
Стиральная машина | 2500 | Progress 3000T | |||
Микроволновая печь | 1600 | 2 | «Штиль» R2000 | ||
Кондиционер | Progress 5000L | ||||
Пылесос | 1500 | 2 | Progress 3000T | ||
Кухонный комбайн | 7 | Progress 2000T | |||
Посудомоечная машина | 2200 | 3 | Progress 3000L | ||
Погружные скважинные насосы, глубинные насосы | 2 | Progress 3000L | ДПК-1/1-3-220-М | ||
Циркуляционные насосы | «Штиль» R 600 ST | Inelt Intelligent 500LT2 | |||
Лампа накаливания | 100 | 0,15 | высокоточная серия L |
В таблице не отражены точные значения электрических приборов, предоставлены лишь ориентировочные цифры для понимания алгоритма выбора стабилизатора напряжения и ИБП.
Расчет силы тока по мощности и напряжению онлайн
Расчёт силы тока онлайн калькулятор
Онлайн калькулятор производит расчёт по нормируемому напряжению, если напряжение в Вашей местности отличается от нормальных значений, т.е. имеются значительные просадки напряжения, советуем Вам воспользоваться формулами приведёнными ниже.
Данные формулы помогут Вам произвести более точный расчёт для Вашей сети
Обращаем Ваше внимание, что формулы для расчёта тока в сети 230 В и в сети 400 В имеют различия. Для получения более точных значений советуем использовать значения напряжения полученные путём измерения действующей величины мультиметром
P— мощность потребителя, Вт;
U— напряжение в сети, В;
cosφ — коэффициент мощности (от 0 до 1);
I = P / ( U ×1,732 × cosφ ) ,
P— мощность потребителя, Вт;
U— напряжение в сети, В;
cosφ — коэффициент мощности (от 0 до 1);
Коэффициент мощности cosφ определение, теория.
Коэффициент мощности cosφ — безмерная физическая величина, которая характеризует потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей . Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
Полная мощность прибора состоит из активной и реактивной составляющей (активной и реактивной мощности). Активная составляющая совершает полезную работу, то есть использует электрическую энергию и полностью преобразует в другой необходимый вид энергии. Существуют отдельные приборы, которые в основном работают на данной составляющей, это к примеру обогреватели, электропечи, электроплиты, утюги, лампочки накаливания и т.п. У данных приборов cosφ будет максимально близок к максимальному значению от 0,95 до 1.
Как определяется пусковой ток
По американскому и немецкому стандарту пусковой ток аккумулятора имеет разное значение. Что это значит и на какое значение нужно ориентироваться? Все дело в испытаниях. Сначала аккумулятор охлаждают до -18°C, чтобы эмитировать экстремальные условия эксплуатации, а затем разряжают через низкоомную нагрузку в течение 30 секунд. Согласно DIN нагрузку на аккумулятор подают до проседания напряжения до 7,2 В, а по стандарту EN и ГОСТ – до 9 В. Отсюда видно, что в первом случае пусковой ток будет больше, так как вызывает большее проседание напряжения, а во втором – меньше. Между стандартов существует коэффициент зависимости равный 1,7, то есть если значение CCA (EN) умножить на 1,7, то получим значение CCA (SAE).
При выборе аккумулятора можно ориентироваться на показатель стартерного тока по любому стандарту, но учитывая, что -18°C для большинства российских регионов «не мороз», лучше подстраховаться и ориентироваться на стандарт EN или ГОСТ.
Определить какой необходим пусковой ток аккумулятора автомобиля поможет таблица зависимости объема бензинового двигателя, емкости и пускового тока аккумулятора.
Объем двигателя | Емкость аккумулятора | Пусковой ток |
До 1,6 л | 60-70 Ah | CCA (SAE) от 640 А CCA (EN) от 395 А |
1,8-2,4 л | 70-85 Ah | CCA (SAE) от 680 А CCA (EN) от 420 А |
2,5-3 л | 90-100 Ah | CCA (SAE) от 760 А CCA (EN) от 460А |
В таблице пусковой ток дан с приставкой «от», это означает, что выбирать АКБ нужно с параметром не ниже указанного, так как запас не будет лишним. Ведь указанный на корпусе батареи показатель – это максимально возможный пусковой ток для данной модели аккумулятора.
В деле, если поставить АКБ с запасом, пусковой ток в обмотках электродвигателя стартера не превысит необходимое для запуска двигателя значение, так как зависит от сопротивления цепи под нагрузкой.
На что влияет пусковой ток аккумулятора автомобиля? В первую очередь – хватит ли его для запуска. В остальном выбирая аккумулятор ориентироваться нужно только на бюджет.
- Сколько можно проехать на машине без генератора на аккумуляторе
- Можно ли заряжать аккумулятор дома
- Сколько вольт должен показывать заряженный аккумулятор
Пример определения тока самозапуска двигателей 6 кВ
Определить ток самозапуска ответственных двигателей, питающихся от трансформатора с расщепленными обмотками.
Расчетная схема, схема замещения и данные трансформатора приведены на рис.1 и 2.
Рис.1 — Расчетная схема
Рис.2 — Схема замещения и данные трансформатора
Расчет производится в следующем порядке.
1. Определяется суммарный пусковой ток электродвигателей Iпуск.сумм. для каждой секции 6 кВ. Расчет приведен в таблице 1 и 2.
Таблица 1 — Характеристики электродвигателей
Наименование агрегата | Тип двигателя | Номинальная мощность Рн, кВт | Ном. ток Iн, А | Кратность пускового тока kпуск | Пусковой ток Iпуск=kп*Iн |
---|---|---|---|---|---|
Дымосос двухскоростной | ДАЗО-141410/12А | 1500/850 | 204/118 | 6,1/5,5 | 1245 (вторая скорость) |
Дутьевой вентилятор двухскоростной | ДАЗО-15498/10 | 630/320 | 76,5/42,5 | 5,5/5,7 | 420 (вторая скорость) |
Питательный электронасос | АС-4000/6000 | 4000 | 445 | 6,3 | 2800 |
Вентилятор первичного дутья | ДАЗО-12-55-8 | 250 | 31,5 | 6,2 | 195 |
Конденсатный насос | АВ-113-4 | 250 | 29,4 | 5,8 | 170 |
Элетронасос масляный пусковой | А-114-6М | 200 | 23,6 | 5,8 | 137 |
Резервный возбудитель | ДАЗ-1810-6 | 1200 | 142 | 10,2 | 1450 |
Циркуляционный насос | ВДД-213/54-16 | 1700 | 215 | 5,4 | 1160 |
Трансформатор 6,3/0,4 кВ, 750 кВА | — | — | 69 | 3 | 207 |
Трансформатор 6,3/0,4 кВ, 560 кВА | — | — | 52 | 3 | 156 |
Таблица 2 — Определение суммарных пусковых токов электродвигателей
Наименование агрегата | Тип двигателя | Распределение по секциям | |||
---|---|---|---|---|---|
I секция | II секция | ||||
Кол.,шт | Пусковой ток, А | Кол.,шт | Пусковой ток, А | ||
Дымосос двухскоростной | ДАЗО-141410/12А | 1 | 1245 | 1 | 1245 |
Дутьевой вентилятор двухскоростной | ДАЗО-15498/10 | 1 | 420 | 1 | 420 |
Питательный электронасос | АС-4000/6000 | 1 | 2800 | 2 | 2*2800=5600 |
Вентилятор первичного дутья | ДАЗО-12-55-8 | 1 | 195 | 1 | 195 |
Конденсатный насос | АВ-113-4 | 2 | 2*170=340 | 1 | 170 |
Элетронасос масляный пусковой | А-114-6М | 1 | 137 | — | — |
Резервный возбудитель | ДАЗ-1810-6 | 1 | 1450 | — | — |
Циркуляционный насос | ВДД-213/54-16 | 1 | 1160 | — | — |
Трансформатор 6,3/0,4 кВ, 750 кВА | — | 3 | 3*207=621 | 5 | 5*207=1035 |
Трансформатор 6,3/0,4 кВ, 560 кВА | — | 1 | 156 | 1 | 156 |
Суммарный пусковой ток: | — | 8525 | 8820 |
2. Определяется суммарное эквивалентное сопротивление электродвигателей согласно выражения 3 для каждой секции 6 кВ:
I секция
II секция
3. Определяется сопротивление трансформатора, исходя из напряжения короткого замыкания Uк.вн_нн, отнесенного к мощности расщепленной обмотки равной 16 МВА.
4. Определяется эквивалентное сопротивление самозапуска от ответственных двигателей для каждой секции согласно выражения 2.
I секция: хсам = хтр. + хдв.сум. = 0,286 + 0,423 = 0,709 Ом
II секция: хсам = хтр. + хдв.сум. = 0,286 + 0,413 = 0,699 Ом
5. Определяется максимальный ток самозапуска двигателей обеих секций согласно выражения 1.
I секция
II секция
6. Определяется максимальный ток самозапуска двигателей обеих секций.
Iсам = Iсам1 + Iсам2 = 5150 + 5200 = 10350 A
7. Определяется остаточное напряжение для наиболее нагруженной II секции, согласно выражения 5.
Литература:
1. Библиотека Электромонтера. Байтер И.И. Релейная защита и автоматика питающих элементов собственных нужд тепловых электростанций. 1968 г.
Пусковой ток электродвигателя
Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток.
Номинальный ток электродвигателей постоянного тока
Номинальный ток трехфазных электродвигателей переменного тока
где: PH — номинальная мощность электродвигателя; UH — номинальное напряжение электродвигателя, ηH — КПД электродвигателя; cos φ H — коэффициент мощности электродвигателя.
Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя.
Зная значение номинального тока, можно рассчитать пусковой ток.
Формула расчета пускового тока электродвигателей
где: IH — номинальное значение тока; Кп — кратность постоянного тока к номинальному значению.
Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.
Климатические исполнения электродвигателей
При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.
Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:
- У — модели для эксплуатации в умеренном климате;
- ХЛ — электродвигатели, адаптированные к холодному климату;
- ТС — исполнения для сухого тропического климата;
- ТВ — исполнения для влажного тропического климата;
- Т — универсальные исполнения для тропического климата;
- О — электродвигатели для эксплуатации на суше;
- М — двигатели для работы в морском климате (холодном и умеренном);
- В — модели, которые могут использоваться в любых зонах на суше и на море.
Цифры в номенклатуре модели указывают на тип ее размещения:
- 1 — возможность эксплуатации на открытых площадках;
- 2 — установка в помещениях со свободным доступом воздуха;
- 3 — эксплуатация в закрытых цехах и помещениях;
- 4 — использование в производственных и других помещениях с возможностью регулирования климатических условий (наличие вентиляции, отопления);
- 5 — исполнения, разработанные для эксплуатации в зонах повышенной влажности, с высоким образованием конденсата.
Расчет тока электродвигателя
Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:
Расчет номинального тока двигателя производится по следующей формуле:
Iном=P/√3Ucosφη
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Расчет пускового тока электродвигателя производится по формуле:
Iпуск=Iном*K
К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторы кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).
Чем отличается контактор от пускателя?
На самом деле контактор – это устройство, состоящее только из электромагнитной катушки и контактов. При подаче напряжения на катушку контакты замыкаются (или размыкаются). Контактор не содержит приспособлений для защиты, фиксации, коммутации, индикации, и др. Пускатель – это устройство, содержащее в себе контактор как главный составляющий элемент. Кроме того, пускатель как правило содержит тепловое реле для защиты от перегрузки по току, кнопки ПУСК и СТОП, индикацию, может быть заключен в корпус, иметь автоматический выключатель для защиты от КЗ. Иначе говоря, пускатель служит для пуска (включения) различных потребителей электроэнергии.
Пускатель может содержать два или три контактора. Это бывает в случаях, когда применяется реверсивное управление двигателем, либо при плавном пуске, когда мощный двигатель включают сначала по схеме “звезда”, а затем – по “треугольнику”.
Разобранный пускатель ПМЛ-1220 0*2Б. Видно контактор и тепловое реле.
Конструктивные особенности
Основными элементами электродвигателя любого назначения являются статор и ротор. Для защиты от контактов с окружающими объектами система с обмотками закрывается в прочный кожух. Предотвратить перегрев обмоток позволяет дополнение в виде установленного на роторном валу охлаждающего вентилятора.
Статор асинхронного трехфазного двигателя с короткозамкнутым ротором имеет стандартное для электродвигателей строение. Исполнение, рассчитанное на работы с обмотками на три фазы, подразумевает расположение сердечников под углом в 120о. Обмотки выполняют из медной проволоки подходящего сечения, изолированной. Подключение обмоток производится в звезду или треугольник (оно описано в отдельных статьях). Статорный магнитопровод жестко фиксируют к стенкам корпуса.
Роторная часть имеет внешний вид, похожий на небольшую цилиндрическую клетку. Парные кольца исполняют роль короткозамыкающего элемента для стержней, изготовленных из алюминия. Если рассматривать конструкцию высокой мощности, для нее стержневые части конструкции могут изготавливаться из меди. Причиной использования данного материала служит его низкое сопротивление. Однако есть и минусы – медь для обмотки стоит дороже алюминия и быстрее плавится при нагреве сердечника вихревыми токами.
Расположение стержней при сборке выполняется поверх сердечников из специальной трансформаторной стали. Монтаж производят на валу агрегата, провод обмотки впрессовывается в специальные пазы магнитопровода. Простота изготовления повышается тем, что в таком исполнении для магнитопроводных пластин не требуется изоляция. Это – один из главных факторов, сделавших асинхронный агрегат короткозамкнутого типа самым популярным (его доля в общей массе электромоторов достигает 90%).
Iн = Pн/(√3Uн х сosφ), кА
где Pн — номинальная мощность двигателя, кВт, Uн — напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) — паспортные значения двигателя.
Рис. 1. Паспорт электрического двигателя.
Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.
Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.
При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.
При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 — 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).
Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)
Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока — Iпуск/Iном. Кратность пускового тока — техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).
Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.
Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).
Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.
На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 — 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.
В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи .
Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.
Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.
Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.
Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).
Синхронные электродвигатели
Синхронные двигатели – оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.
Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.
В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.
Как определить и проверить ток при запуске двигателя?
А еще мы рассмотрим какие методики определения существуют в разных странах?
На корпусе аккумулятора указывается масса параметров. Один из наиболее важных — ток холодной прокрутки.
К примеру, если на источнике питания нанесена надпись 300 А
(DIN), то аккумулятор способен выдать300 Ампер.
Советуем изучить — Конструктивное исполнение электрических сетей напряжением свыше 1000 в
Условия выдачи такого тока — температура минус 18 градусов Цельсия и непродолжительная разрядка АКБ с учетом стандартов DIN (характерны для Германии).
Если говорить простыми словами, то на 1-й секунде напряжение может составлять 12 Вольт. Но уже через полминуты данный показатель снизится до уровня 9 Вольт.
Через 2,5 минуты уровень напряжения может опуститься еще ниже — до шести вольт. Данные измерения производятся с учетом требования стандарта Германии DIN 43539
Что касается Соединенных Штатов, то здесь стандартов ГОСТ или DIN нет вовсе.
В стране, как правило, работают нормы SAE, применяемые ОАИ (обществом автомобильных инженеров).
Особенность этих стандартов — максимальная приближенность к нормам Европейского союза ЕN 60095
-1 и Российской Федерации (ГОСТ 959-2002). Из-за этого и появляется определенная путаница у автолюбителей.
Так, покупая АКБ производства Соединенных Штатов, необходимо соотносить его параметры со стандартными нормами ЕС.
Для этого существует специальная таблица, позволяющая подобрать нужные характеристики по току холодной прокрутки с учетом разных методик исследования.
Так, в отношении пускового тока и его измерений можно выделить следующие стандарты:
- в странах ЕС работает стандарт Europa Norm, когда АКБ разряжается до 7,5 Вольт на протяжении десяти секунд. Температура замеров –18 градусов мороза;
- в Германии работает стандарт Deutsche Industrie Norm (DIN). В данном случае источник питания разряжается до уровня 9,0 Вольт в течение полуминуты (температура аналогична);
- В США действует стандарт SAE, когда разряд батареи продолжается в течение полуминуты до момента достижения напряжения 7,2 Вольта. Температурные условия аналогичны.
Пусковой ток электродвигателя
Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток.
Номинальный ток электродвигателей постоянного тока
Номинальный ток трехфазных электродвигателей переменного тока
где: PH – номинальная мощность электродвигателя; UH — номинальное напряжение электродвигателя, ηH — КПД электродвигателя; cosfH — коэффициент мощности электродвигателя.
Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя.
Зная значение номинального тока, можно рассчитать пусковой ток.
Формула расчета пускового тока электродвигателей
где: IH – номинальное значение тока; Кп – кратность постоянного тока к номинальному значению.
Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.
Практическое применение
Силовые приводы будут эксплуатироваться правильно только в том случае, если при их выборе были учтены пусковые характеристики.
Ток пуска может повредить не только сам мотор, но и другое электрооборудование, установленное с ним на одной линии. Для решения поставленной задачи можно использовать следующие методы:
- Производить запуск силового агрегата на холостом ходу – нагрузка прикладывается только после перехода мотора в рабочий режим.
- При подключении использовать схему треугольник-звезда.
- Применять автотрансформаторный пуск – напряжение на двигатель подается через автотрансформатор, что позволяет добиться плавного повышения силы тока.
- Использовать пусковые резисторы.
- Применение частотных регуляторов и тиристорных устройств плавного запуска.
С помощью устройств плавного пуска, основанных на тиристорах, можно снизить показатель электротока пуска в два раза. При этом они могут работать как с асинхронными, так и синхронными электромоторами. В случае с трехфазными асинхронными двигателями, широкое распространение получили преобразователи частоты. Они позволяют изменять частоту электротока, обеспечивая не только плавный старт мотора, но и частоту вращения его ротора. Это эффективные устройства, но с высокой стоимостью. Следует помнить, что частотные преобразователи создают в сети помехи, устранить которые поможет сетевой фильтр.
Также можно использовать схему пуска силового агрегата с переключением обмоток со звезды на треугольник.
Например, этот метод не применяется при подключении асинхронных электромоторов, рассчитанных на напряжение 220-380 В.
Сейчас на рынке появились более современные устройства – софт-стартеры. Они основаны на микропроцессорах и весьма эффективны. Единственным недостатком этих устройств может считаться лишь высокая стоимость.
Типы двигателей
Электродвигатели постоянного и переменного тока
В зависимости от используемого электрического тока двигатели делятся на две группы:
- приводы постоянного тока;
- приводы переменного тока.
Электродвигатели постоянного тока сегодня применяются не так часто, как раньше. Их практически вытеснили асинхронные двигатели с короткозамкнутым ротором.
Главный недостаток электродвигателей постоянного тока — возможность эксплуатации исключительно при наличии источника постоянного тока или преобразователя переменного напряжения в постоянный ток. В современном промышленном производстве обеспечение данного условия требует дополнительных финансовых затрат.
Тем не менее, при существенных недостатках этот тип двигателей отличается высоким пусковым моментом и стабильной работой в условиях больших перегрузок. Приводы данного типа чаще всего применяются в металлургии и станкостроении, устанавливаются на электротранспорт.
Принцип работы электродвигателей переменного тока построен на электромагнитной индукции, возникающей в процессе движения проводящей среды в магнитном поле. Для создания магнитного поля используются обмотки, обтекаемые токами, либо постоянные магниты.
Электродвигатели переменного тока подразделяются на синхронные и асинхронные. У каждой подгруппы есть свои конструктивные и эксплуатационные особенности.
Синхронные электродвигатели
Синхронные двигатели — оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.
Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.
В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.
Асинхронные электродвигатели
Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.
В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.
КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок — до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.
Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:
- Для лифтов и другого оборудования, требующего ступенчатого изменения скорости, выпускаются многоскоростные асинхронные приводы.
- При эксплуатации лебедок и металлообрабатывающих станков используются электродвигатели с электромагнитной тормозной системой. Это обусловлено необходимостью остановки привода и фиксации вала при перебоях напряжения или его исчезновения.
- В процессах с пульсирующей нагрузкой или при повторно-кратковременных режимах могут использоваться асинхронные электродвигатели с повышенными параметрами скольжения.
Вентильные электродвигатели
Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.
К преимуществам данного оборудования относятся:
- Высокий эксплуатационный ресурс.
- Простота обслуживания за счет бесконтактного управления.
- Высокая перегрузочная способность, которая в пять раз превышает пусковой момент.
- Широкий диапазон регулирования частоты вращения, который почти вдвое выше диапазона асинхронных электродвигателей.
- Высокий КПД при любой нагрузке – более 90 процентов.
- Небольшие габариты.
- Быстрая окупаемость.
Расчет тока электродвигателя
Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:
Расчет номинального тока двигателя производится по следующей формуле:
Iном=P/√3Ucosφη
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Расчет пускового тока электродвигателя производится по формуле:
Iпуск=Iном*K
К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).
Расчет коэффициента мощности электродвигателя
Онлайн расчет коэффициента мощности (cosφ) электродвигателя
Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:
cosφ=P/√3UIη
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Выводы:
- При подсчёте суммарной мощности электротехники мощность приборов с пусковыми токами нужно рассчитывать не по номиналу, а с учётом пусковых токов (в Вт либо в А).
- Пусковые токи даёт техника, в конструкции которой есть электродвигатель, насос, компрессор, нить накаливания или катушка индуктивности.
- Чем хуже напряжение в магистральном проводе (ниже 150 В или выше 250 В), тем более высокий номинал должен быть у стабилизатора или ИБП (примерно на 30 % больше суммарной мощности работающей техники).
Пусковые токи можно ассоциировать с началом движения велосипеда: в момент начала движения нужно большое усилие, чтобы раскрутить колёса, но когда велосипед приходит в движение, требуется меньше сил для поддержания скорости.