Электро-турбина: характеристики, принцип действия, плюсы и минусы работы, советы по установке своими руками и отзывы владельцев

Достоинства и недостатки

Привод турбины электрическим двигателем позволяет устранить основные недостатки механических турбокомпрессоров.

  • Отсутствует лаг, так как электромотор может обеспечить очень высокую скорость раскрутки ротора.
  • Отсутствует турбояма, обусловленная недостатком отработанных газов, так как в таком случае нехватку энергии компенсирует электромотор.
  • Электродвигатель позволяет сохранить наддув при переходных процессах подобно антилагу без негативных эффектов последнего.
  • Это обеспечивает обширный диапазон работы и равномерный крутящий момент.
  • Некоторые типы данных механизмов способны генерировать электричество, снижая нагрузку на генератор и сокращая расход топлива.
  • Возможна рекуперация потерянной энергии, как это реализовала Ferrari в двигателе «Формулы-1».
  • Электро-турбины работают в более щадящих условиях и на меньших оборотах (100 тыс. вместо 200-300 тыс.).

Устройство и принцип работы турбины на бензиновом двигателе

По сути, принцип работы всех нагнетателей прост, а в некоторых местах примерно одинаков. Во всех системах при помощи специального компрессора воздух под давлением подается в двигатель автомобиля.

В свою очередь стоит различать два абсолютно разных типа нагнетателей воздуха в двигатель автомобиля:

  1. Первый тип – это турбины, которые используют энергию отработанных газов для повышения давления в цилиндрах.
  2. Второй тип – это механические компрессоры с приводом от самого двигателя.

Как правило, давление, нагнетаемое компрессором, не превышает 80 процентов от стандартной схемы заполнения камеры сгорания, которая осуществляется в атмосферном двигателе вследствие разряженности, возникающей в цилиндре.

Устройство турбинного нагнетателя зависит от его типа. Разные конструкции могут отличаться между собой. Тем не менее, основные детали турбины зачастую одни и те же:

  • Крыльчатка с лопастями;
  • Турбинные и компрессорные колеса;
  • Вал;
  • Клапан, управляющий потоком выхлопных газов;
  • Сам корпус и патрубки.

Принцип работы турбины на бензиновом двигателе, которая работает благодаря энергии отработавших газов, прост:

  1. Газы поступают в турбину, под их давлением раскручивается ротор.
  2. Колесо компрессора, находясь на том же валу, что и ротор, вращаясь вместе с ним, засасывает воздух из атмосферы и подает его в камеры сгорания мотора.
  3. Отработавшие газы после того, как раскрутили ротор, выходят через патрубок в глушитель.

В зависимости от используемого компрессора, турбинный нагнетатель может увеличить давление воздуха в цилиндре на величину от 20 до 85 процентов! При этом мощность двигателя возрастает на 10-55 процентов.

В свою очередь, если на автомобиле стоит компрессор, который работает не за счет энергии газов, а благодаря механическому приводу с коленвалом, то в таких системах часть мощности двигателя затрачивается на то, чтобы обеспечить работу нагнетателя. Как следствие, падает мощность, передаваемая на колеса, а также повышается расход топлива. Другими словами эффективность такой установки ниже, хотя и в ней есть свои плюсы, но эта статья не о них.

В остальном же, принцип работы компрессора на бензиновом двигателе схож с предыдущим вариантом:

Раскручиваясь посредством зацепления с коленчатым валом, чаще всего с помощью ремня, колесо компрессора подает воздух в двигатель.

Таким образом, получается увеличить количество подаваемого воздуха в мотор примерно до 50%.

Дело в том, что при нагревании плотность воздуха падает, а при сдавливании он может разогреваться до 170-190 градусов. Поэтому в систему был добавлен специальный радиатор, который его охлаждает и не позволяет снижать показатели наполнения цилиндров воздухом.

Достоинства и недостатки

Привод турбины электрическим двигателем позволяет устранить основные недостатки механических турбокомпрессоров.

  • Отсутствует лаг, так как электромотор может обеспечить очень высокую скорость раскрутки ротора.
  • Отсутствует турбояма, обусловленная недостатком отработанных газов, так как в таком случае нехватку энергии компенсирует электромотор.
  • Электродвигатель позволяет сохранить наддув при переходных процессах подобно антилагу без негативных эффектов последнего.
  • Это обеспечивает обширный диапазон работы и равномерный крутящий момент.
  • Некоторые типы данных механизмов способны генерировать электричество, снижая нагрузку на генератор и сокращая расход топлива.
  • Возможна рекуперация потерянной энергии, как это реализовала Ferrari в двигателе «Формулы-1».
  • Электро-турбины работают в более щадящих условиях и на меньших оборотах (100 тыс. вместо 200-300 тыс.).

Однако данная технология имеет ряд недостатков.

  • Большая сложность конструкции, включающей электродвигатель и контроллеры.
  • Это обуславливает высокую стоимость.
  • К тому же сложность конструкции сказывается на надежности.
  • Ввиду большого количества конструктивных элементов (помимо турбины сюда входит электромотор, контроллеры, батарея) такие турбокомпрессоры намного больше и тяжелее обычных.

К тому же каждый тип электротурбин характеризуется специфическими особенностями.

Тип EC EAT EST TEDC вверх по потоку TEDC вниз по потоку
Достоинства
  • Гибкость управления;
  • гибкость компоновки;
  • отсутствие инерции вала;
  • отсутствие вестгейта;
  • отсутствие противодавления
  • Компактность;
  • малая мощность электромотора и инвертора;
  • отсутствие вестгейта
  • Гибкость управления;
  • гибкость компоновки;
  • отсутствие инерции вала;
  • отсутствие вестгейта
  • Простота установки;
  • отсутствие инерции вала;
  • малая мощность электромотора и инвертора;
  • постоянное повышение производительности
  • Лучшая отзывчивость при переходных процессах;
  • простота установки;
  • малая мощность электромотора и инвертора;
  • постоянное повышение производительности
Недостатки
  • Высокая мощность электромотора и инвертора;
  • низкая эффективность
  • Необходимость дополнительного охлаждения;
  • дополнительная инерция вала;
  • предел ускорения наддува из-за противодавления
  • Высокая мощность электромотора и инвертора;
  • потери энергии при конверсии;
  • предел ускорения наддува из-за противодавления;
  • необходимость дополнительного места для установки
  • Не очень быстрая отзывчивость при переходных процессах;
  • необходимость дополнительного места для установки;
  • низкая эффективность
  • Необходимость дополнительного места для установки;
  • низкая эффективность

По долговечности, по мнению IHI, электротурбины будут эквивалентны механическим ввиду работы в тех же условиях в более щадящем режиме при большей сложности конструкции.

Конструкция

Приведенные выше типы электротурбин имеют различное устройство. Это заключается в разных схемах расположения компонентов, в отличиях их технических параметров и т. д.

EC представляет собой приводимый электромотором компрессор. Это упомянутый выше электронагнетатель. Электропривод обеспечивает наибольшую гибкость контроля и возможность эксплуатации компрессора в оптимальной рабочей точке. Однако для этого требуются мощные электрические компоненты.

В EAT высокоскоростной электромотор установлен между турбиной и компрессором, обычно на валу. Ввиду того, что он не является основным источником энергии, используются электрические компоненты малой мощности. Это обуславливает невысокую стоимость. К тому же такие турбокомпрессоры имеют способность самоопределения положения ротора и характеризуются хорошими генерирующими и моторными возможностями. Основной проблемой является высокотемпературное воздействие на электромотор, особенно если он установлен внутри корпуса.

Существуют различные методы ее решения. Например, BMW установила сцепления для обеспечения возможности подключения и отключения электродвигателя от вала. Благодаря этому мотор можно разместить за пределами турбины. G+L inotec использовала двигатель с постоянными магнитами с большим воздушным зазором, который также может находиться снаружи. Внутренний диаметр статора равен внешнему диаметру компрессора, а внешний диаметр ротора – выходному диаметру вала. Воздушный зазор может выполнять роль впускного воздушного канала. Это обеспечивает преимущества с точки зрения охлаждения, инерции и термического эффекта. Кроме того, по термоустойчивости и терморегулированию индукционные электромоторы, с переменным магнитным сопротивлением, универсальные коллекторные более предпочтительны в сравнении с двигателем с поверхностными постоянными магнитами.

В EST турбина и компрессор не соединены валом, и каждый из них оснащен электродвигателем. Это обеспечивает возможность работы компрессорного и турбинного колес с различными скоростями. Данная конструкция имеет преимущества, аналогичные ET, но, в отличие от нее, способна генерировать энергию. Кроме того, она отличается меньшим температурным эффектом ввиду разделения компрессора и турбины, а также отсутствием дополнительной инерции от турбины и ее вала. Разделение турбины и компрессора выгодно с точки зрения компоновки, так как позволяет оптимизировать путь воздушного потока. Однако такая технология также требует мощных электромотора, генератора и инверторов для удовлетворения соотношения крутящий момент/инерция, что сказывается на стоимости.

TEDC представляет собой механическую турбину с дополнительным компрессором, приводимым электромотором. По расположению компрессора относительно турбины данные системы классифицируют на варианты выше и ниже по потоку (над и под турбиной соответственно). В целом они характеризуются значительно лучшей отзывчивостью при переходных процессах на «низах» ввиду независимости электродвигателя от инерции турбины и вала. Причем TEDC в нисходящем потоке в данном отношении превосходят варианты в восходящем ввиду того, что последние отличаются большим объемом для поддержания давления. Еще одно достоинство электротурбин данного типа состоит в минимальных отличиях от механических.

Плюсы и минусы турбонаддува

Неоспоримым достоинством двигателей с турбиной является повышенная мощность. С таким же объемом цилиндров атмосферник будет слабее на 30-50 %, зависит от модели. Однако в автомобилях с турбонаддувом есть и слабые стороны. Разберемся с преимуществами и возможными недостатками подробнее.

Преимущества турбины:

  • Небольшие размеры двигателя – турбина дает возможность повысить мощность без увеличения габаритов силового агрегата. К примеру, 2-3-цилиндровый турбодвигатель по мощности сопоставим 4-цилиндровому атмосфернику.
  • Экономия топлива – благодаря оптимизации структуры топливно-воздушной смеси и более эффективному процессу горения снижается расход горючего, если сравнивать с обеспечением таких же лошадиных сил на атмосферном моторе.
  • Экологичность – в выхлопе машин с турбинами меньше вредных веществ, поскольку в цилиндрах происходит практически 100 % сгорание смеси. С утверждением новых Евро норм выпуск автомобилей с бензиновыми турбодвигателями увеличился на 25 %.
  • Низкий уровень шума – во время движения автомобиля нет никаких вибраций. Исправная турбина работает очень тихо.

Недостатки турбины:

  • Уменьшение ресурса двигателя – работа в режиме форсирования и повышенного давления провоцирует более быстрый износ деталей и узлов силовой установки.
  • Чувствительность к топливу – бензиновые турбодвигатели требуют горючего с высоким октановым числом. Если заливать АИ-92, мотор быстро выйдет из строя.
  • Турбины требуют частой замены масла – в смазке нуждается не только двигатель, но и узлы турбины. Поэтому масло быстрее израсходуется и загрязняется. К тому же, использовать нужно только дорогую качественную синтетику. Нарушение регламента замены смазочных материалов приводит к быстрой поломке турбокомпрессора.
  • Дорогой ремонт – капремонт мотора необходим на пробеге от 200 тыс. км. Качественно починить двигатель с турбиной смогут не в каждой автомастерской. Чтобы проводить такой ремонт требуются вложения в специализированное оборудование, потому цена не может быть низкой.
  • Заморочки с эксплуатацией – нужно правильно заводить авто, нельзя сразу глушить мотор после остановки и т. д.
  • Эффект «турбоямы» — при резком нажатии на педаль газа автомобиль слабо реагирует, случаются так называемые провалы. То есть на низких оборотах машине с турбиной резко тронуться проблематично.

Турбины имеют много достоинств, но и минусов предостаточно. Хотя при правильной эксплуатации растраты на ремонт системы наддува будут минимальными. А от эффекта «турбоямы» помогают избавиться турбокомпрессоры с изменяемой геометрией и модели Biturbo/Twin-turbo.

Минусы турбин

Минусы у этого агрегата также существенны:

1) Это более частая замена масла, потому как подшипники очень требовательны к качеству смазки (все же там просто огромные обороты).

2) Ресурс не такой большой, обычно ходят по 150 000 километров.

3) Дорогостоящий ремонт, если менять на немецком автомобиле, то это примерно от 70 000 рублей.

4) Топливо – с турбиной нужно заправляться высокооктановыми бензинами, не ниже 95, что «бьет» по кошельку.

5) Охлаждение турбины – старые варианты таких устройств, нужно было правильно охлаждать. Иначе если вы просто заглушите машину, то от перепада температур, крыльчатку просто может «покоробить», далее ремонт. Поэтому, придумали турботаймеры, они не дают двигателю сразу заглохнуть, а несколько минут работают на низких оборотах – охлаждая крыльчатку.

Вот такой вот агрегат эта турбина, из сегодняшней статьи вы поняли – как она работает, теперь вы «подкованы».

НА этом заканчиваю, думаю было интересно.

Похожие новости

  • Что такое свечи зажигания?
  • Как проверить уровень масла в автомате?
  • Купил подержанную (Б/У) машину – что менять в первую очередь?

Турбонаддув на ВАЗ своими руками

Сегодня турбонаддув на ВАЗ – это экзотика. Но преимущества в плане мощности турбо моторов над «атмосферными» способствуют появлению машин, которые оснащены турбинами. Фактически турбонаддув на ваз своими руками — это получение максимального количества лошадей. При одном и том-же объеме турбированный двигатель может иметь мощность в 2 раза большую при том-же расходе топлива. Сегодня в моду вошли турбодвигатели с небольшим литражом.Специфика подобных моторов такова, что если большинство усовершенствований ничего не дают на атмосферниках, то на турбинных моторах полученные результаты потрясают. У многих есть мнение, что с прямотоком двигателю легче «дышать» и крутится. Но это недоказанные мнения. Если атмосферный двигатель придает больше звука, чем прямоток, то на турбо элементарным впуском и выпуском легко добиться высоких результатов.Рассмотрим турбонаддув на ваз своими руками в плане модернизации, вариант установки турбины с низким давлением и двигателем с распределенным впрыском. Коленвал, шатуны и блок щилиндров можно применять стандартные. Клапаны и распредвал — тоже. Возможна разница в головке цилиндров и поршнях т.к. установка турбины потребует снижения уровня сжатия. А добиться такого результата можно или специальными поршнями, или увеличением камеры сгорания. Поршни можно оставить и родные, а ограничиться только головкой.Впрыску необходим увеличенный ресивер и нестандартная программа управления. Стоит отметить что турбонаддув на ваз своими руками также потребует изменений смазки.Отличается и выпуск – между приемной трубой и выпускным коллектором теперь расположена турбина. Резонатор и глушитель желательно использовать стандартные, но для получения большой мощности можно установить и прямоточный выпуск.Установка турбины низкого давления – на ваше усмотрение и по вашим возможностям. В случае с автомобилем ВАЗ турбонаддув на ваз своими руками монтируют на привод правого колеса между приемной трубой и выпускным коллектором. К компрессору подается два воздушных патрубка. Первый соединен с ресивером, а второй с воздушным фильтром.Таким образом, наиболее дефицитная и дорогая деталь это турбина. Для сравнения можно привести турбину с характеристиками заводской машины и турбированной. Последний автомобиль оснащается стандартным выпуском, поэтому он не настроен на получение большой мощности. Автомобиль с турбированным двигателем позволяет получать максимум мощности.

Нагнетатель воздуха на авто – не все так просто

Однако использовать нагнетатель воздуха прямо в лоб оказалось достаточно затруднительно. Дело в том, что хотя мощность двигателя при этом увеличилась, но это создало ряд новых проблем, которые требовали своего решения для успешного внедрения наддува на авто. Одной из них явилось выделение значительно большего количества тепла при сгорании ТВС, из-за чего прогорали клапана, поршни, выходила из строя система охлаждения.

Другой особенностью стала повышенная вероятность возникновения детонации бензинового двигателя. Когда нагнетатель осуществляет дополнительную подачу воздуха в мотор, то возникающие в них при сжатии повышенные температура и давление могут вызвать детонацию, вследствие чего возможно разрушение двигателя, или как минимум, его преждевременный значительный износ. Избежать этого поможет использование высокооктановых видов топлива или декомпрессия, так по-другому называется уменьшение степени сжатия.

Новые виды горючего дороги, что увеличивает стоимость эксплуатации авто, а декомпрессия приводит к снижению выдаваемой мощности, т.е. теряется эффект от использования наддува воздуха.

Минусы электрического варианта

Многие мои читатели думают — что сделать такую систему очень просто, нужно взять какой-нибудь кулер и вставить его в патрубок забора воздуха и вот оно счастье! Такие «чудо-кулеры» продаются, как правило в китайских интернет магазинах, про такие типы поговорим ниже.

Однако ребята тут не все так просто. В нормальном (на холостых) режиме, атмосферный двигатель 1,6 литра потребляет примерно 300 – 400 литров воздуха за час работы. А на больших оборотах скажем в 4000 – 5000 умножаем эту цифру на 4 – 5, то есть 1200 – 1600 литров. Просто представите этот объем! Если вычислить минутное потребление 300/60 = 5 литров в минуту, или 20 при больших оборотах.

Так вот – электро турбина должна увеличивать эту цифру, а не тормозить ее! Если вы поставите слабый двигатель, он не будет нагнетать нужное давление, а создаст эффект «воздушной пробки», то есть он своими лопастями будет тормозить приток воздуха в двигатель – мешать нормальному проходу.

А теперь представьте, какой нужен электрический вариант двигателя для нагнетания такого объема! Повторюсь для повышения производительности нужно хотя бы 6 – 7 литров воздуха на холостых, и 25 на высоких и это для 1,6 литрового варианта, для больших объемов нужно больше.

Если провести аналогию с немецкими производителями, то там применяется как минимум бесколлекторный 0,5 КВт электромотор, который вращается с бешенными оборотами, может достигать до 20 000 и его способности к давлению составляют от 1 до 5 атмосфер.

Для более мощных автомобилей, применяются более мощные двигатели до 0,7 КВт.

Как становится понятно штатный генератор может и не потянуть такое потребление электричества, поэтому его заменяют на более мощный, либо ставят дополнительный.

А как известно высокое потребление энергии просто тормозит генераторы, а значит и увеличивает торможение двигателя, что скажется на его отдаче, понижается КПД.

Однако, проведенные эксперименты выявили рост производительности, примерно на 20 – 30% это существенно. Но из-за сложности и дороговизны устройств, применение на автомобилях пока не имеет массового производства.

Например, механические компрессоры намного дешевле и производительнее. Иногда разница в цене может достигать 5 – 7 раз.

Принцип строения

Нужно отметить, что сейчас некоторые немецкие производители имеют в строении своих моторов такие нагнетатели. И ставятся они как вы поняли, в системе забора воздуха. Первыми применили такие нагнетатели компании Mercedes, BMW и AUDI.

Принцип здесь прост – ставится мощный «вентилятор», который создает давление примерно от 0,5 атмосферы (а возможно и более). Запитан от электро системы автомобиля, он нагнетает в двигатель дополнительный кислород необходимый для увеличения мощности. С настройками подачи топлива, можно добиться существенного прироста – около 20 – 30 %.

Электро турбину стоит настраивать и на определенные обороты, например на холостых она должна работать медленнее, а на высоких оборотах соответственно быстрее. Получается чуть ли не идеальная система! Но в чем же подвох, где минусы? И знаете, они есть.

Заряжаем турбину

Инженеры-разработчики вновь углубились в различные проектирования и эксперименты. И как-то неожиданно для себя однажды обнаружили следующую вещь (закономерность). При развитии электрических технологий в автопроизводстве и с изучением всех плюсов и минусов электрических силовых агрегатов, что используются в автомобильной индустрии, было подмечено следующее, что у автомобилей с электродвигателями, ответ на нажатие на педаль газа происходит почти мгновенно, без каких-либо задержек. И это показалось для инженеров самой разумной отправной точкой, чтобы применить данную положительную черту в использовании электрических компонентов при создании конкретной идеальной турбины. Электромобили стоят пока что дорого, и это из-за размеров самих моторов, аккумуляторов, а еще они не совсем практичны в связи с ограниченной дистанцией пробега на которую этот электромобиль может уехать на одной подзарядке.

Но зачем же тогда надо использовать крупные узлы электромобилей, когда можно взять идею и применить ее в совсем другом формате к обычному для нас двигателю ДВС? Ведь автопроизводители могут использовать для этого совсем небольшие электрические двигатели и их компоненты. Одним из таких средств, что позволил увеличить мощность двигателя не полагаясь на выхлопные газы, стал электротурбонаддув.

“Электродвигатель может среагировать мгновенно (в течение 250 миллисекунд)”, — так говорят в Valeo. Такой отклик электродвигателя может сократить потребление топлива на 10% с использованием данной и необходимой настройки. По сути говоря, так как новый вид компрессоров не приводится в движение выхлопными газами, то технически он является простым нагнетателем, которые для простоты также еще называют электрическими турбонагнетателями.

Компания (концерн) «Фольксваген» и связанные с ним автобренды вкладывают значительные средства в эти новые электрические турботехнологии.

“Концерн «Volkswagen» работает над созданием электрического турбонагнетателя для использования его с различными автобрендами в глобальном масштабе,”- сказал Марк Джилес, представитель «VW USA». “Основным преимуществом данного нагнетателя является время отклика и то, что он подает импульс от холостого хода в сравнении с выхлопными зарядными устройствами, которые требуют для себя по меньшей мере 1500 об/мин для подачи дополнительного давления”.

Какие двигатели проще турбировать

Даже если вы планируете усовершенствовать автомобиль «классической» серии, лучше не полениться и купить 16-клапанный приоровский мотор. Благо сейчас нет необходимости оформлять установку нового двигателя через ГИБДД, так как этот элемент является запасной частью. Преимущество установки 16-клапанного мотора в том, что его намного проще ремонтировать, тюнинг осуществляется тоже без сложностей. Но самое главное — это то, что у него изначально очень большая мощность, намного выше, нежели на любом другом автомобиле «Лада».

Да и лезть в конструкцию двигателя, проводить корректировку зазоров в клапанном механизме, регулировать УОЗ вам больше не нужно

Обратите внимание, что карбюраторные двигатели нельзя турбировать, кто бы что ни говорил. Суть работы турбины заключается в том, что ею нагнетается давление во впускной коллектор и создается напор воздуха, который поступает в камеры сгорания с топливом

Если поставить турбину на карбюраторный двигатель, то он просто перестанет работать. Могут подойти восьмиклапанные инжекторные моторы, но у них намного меньше мощность, а если вы дорожите каждой лошадиной силой, то это существенный минус.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector